Search results for "relativistic"

showing 10 items of 308 documents

A non-relativistic model for the $[cc][\bar{c}\bar{c}]$ tetraquark

2017

We use a non-relativistic model to study the spectroscopy of a tetraquark composed of $[cc][\bar{c}\bar{c}]$ in a diquark-antidiquark configuration. By numerically solving the Schr\"{o}dinger equation with a Cornell-inspired potential, we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the $c\bar{c}$ spectrum and are also extended to the interaction between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the …

QuarkNuclear and High Energy PhysicsParticle physicsinterpretation of experiments: CERN LHC CollcharmoniumsplittingHigh Energy Physics::LatticeFOS: Physical sciencesBELLE01 natural sciencesSchrödinger equationquarksymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)excited state0103 physical sciencesstructureTensor010306 general physicsInstrumentationSpin-½Physics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologymodel: nonrelativisticAstronomy and AstrophysicstetraquarkThree-body problemDiquarkHigh Energy Physics - Phenomenologythree-body problemdiquark[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Excited statesymbolsSchroedinger equationHigh Energy Physics::ExperimentTetraquarkcharmChinese Physics C
researchProduct

DFT and experimental studies on structure and spectroscopic parameters of 3,6-diiodo-9-ethyl-9H-carbazole

2015

The first report on crystal and molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented. Experimental room-temperature X-ray and 13C chemical shift studies were supported by advanced theoretical calculations using density functional theory (DFT). The 13C nuclear magnetic shieldings were predicted at the non-relativistic and relativistic level of theory using the zeroth-order regular approximation (ZORA). Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from experiment of 44.3 dropped to 4.25 ppm). The changes in ring aromatic character via simple harm…

Relativistic Effects3Simple harmonic motionDFT calculations010402 general chemistryRing (chemistry)13C NMR spectra01 natural sciencesMolecular physicsChemical shift indexCrystalZORA6-diiodo-9-ethyl-9H-carbazoleComputational chemistrycarbazoleFaculty of ScienceMolecule/dk/atira/pure/core/keywords/TheFacultyOfSciencePhysical and Theoretical Chemistry010405 organic chemistryChemistryChemical shiftAromaticityQuantum ChemistryCondensed Matter Physicscomputational chemistry0104 chemical sciencesZORA GIAO NMR calculationsNMR spectrocopyDensity functional theoryX-ray structureNMR; chemical shiftStructural Chemistry
researchProduct

Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein's revolution

2015

This volume presents the proceedings of the international scientific conference ''Spanish Relativity Meeting (ERE 2014): almost 100 years after Einstein's revolution''. The conference was devoted to discussing the current state-of-the-art of a wide variety of topics of research in the fields of Gravitation and General Relativity in the ''pre-centennial'' year of General Relativity. The name of the conference was chosen to highlight the importance of the upcoming one hundredth anniversary of Einstein's theory of General Relativity, officially established by the Internal Society on General Relativity and Gravitation in November 25th, 2015. In particular, the conference was organized along thr…

HundredthPhysicsHistoryGeneral relativityRelativistic astrophysicsComputer Science ApplicationsEducationGravitationsymbols.namesakeTheoretical physicsTheory of relativityStatic interpretation of timesymbolsQuantum field theoryEinsteinClassicsJournal of Physics: Conference Series
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Numerical Simulations of Jets from Active Galactic Nuclei

2019

Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborho…

PhysicsActive galactic nucleus010308 nuclear & particles physicsRadio galaxyplasma physicslcsh:AstronomyNumerical analysisAstrophysics::High Energy Astrophysical PhenomenaTheoretical modelsAstronomy and AstrophysicsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslcsh:QB1-991Astrophysical jetmagneto-hydrodynamics0103 physical sciencesactive galactic nucleinumerical methodsMagnetohydrodynamics010303 astronomy & astrophysicsPhenomenology (particle physics)Astrophysics::Galaxy Astrophysicsrelativistic jetsGalaxies
researchProduct

High-gradient testing of an $S$-band, normal-conducting low phase velocity accelerating structure

2020

A novel high-gradient accelerating structure with low phase velocity, $v/c=0.38$, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC $100\text{ }\text{ }\mathrm{MV}/\mathrm{m}$ high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Field (physics)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]cavityType (model theory)01 natural sciencesp: accelerationLinear particle accelerator0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsReview ArticlesPhysics010308 nuclear & particles physicsvelocity: lowPulse durationSurfaces and Interfaceslinear acceleratorgradient: highAccelerators and Storage Ringsvelocity: phasePulse (physics)particle: nonrelativisticDistribution (mathematics)lcsh:QC770-798Atomic physicsPhase velocityEnergy (signal processing)performance
researchProduct

NADA: A new code for studying self-gravitating tori around black holes

2008

We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 (ADM) system, the so-called BSSN approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon metho…

PhysicsNuclear and High Energy PhysicsSpacetimeWhite holeAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Relativistic starGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyClassical mechanicsRotating black holeEinstein field equationsGravitational collapseExtremal black hole
researchProduct

Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions atsNN=200GeV

2015

We present a systematic study of charged-pion and kaon interferometry in Au + Au collisions at root s(NN) = 200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

PhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryCharged particleMomentumNuclear physicsPionCharge radiusTransverse massHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsImpact parameterNuclear ExperimentRelativistic Heavy Ion ColliderEvent (particle physics)Physical Review C
researchProduct

Charm and bottom baryon decays in the Bethe-Salpeter approach: Heavy to heavy semileptonic transitions

1998

Charm and bottom baryons and mesons are studied within the framework of a relativistically covariant 3D reduction of the Bethe-Salpeter equation. We carry out an analysis of semileptonic decays of heavy hadrons within this framework using explicit oscillator-type wave functions where we calculate Isgur-Wise functions, decay rates and asymmetry parameters. Within this model we also study the effect of interactions between the light quarks inside the heavy baryon and how they affect the values of the computed heavy baryon observables. We also elaborate on the role of relativistic effects in the calculation of the heavy baryon Isgur-Wise function.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsBethe–Salpeter equationMesonmedia_common.quotation_subjectHadronNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesAsymmetryNuclear physicsBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentCharm (quantum number)Relativistic quantum chemistryNuclear Experimentmedia_common
researchProduct