Search results for "relativity"

showing 10 items of 1213 documents

Free Fields for Chiral 2D Dilaton Gravity

1998

We give an explicit canonical transformation which transforms a generic chiral 2D dilaton gravity model into a free field theory.

AstrofísicaPhysicsGravitacióNuclear and High Energy PhysicsGravity (chemistry)Canonical quantizationHigh Energy Physics::LatticeFOS: Physical sciencesCanonical transformationGeneral Relativity and Quantum Cosmology (gr-qc)Free fieldGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyGravity model of tradeQuantum gravityDilatonMathematical physics
researchProduct

Gravitational wave content and stability of uniformly, rotating, triaxial neutron stars in general relativity

2017

Targets for ground-based gravitational wave interferometers include continuous, quasiperiodic sources of gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible, Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as well as with two different evolution codes. We find that all models are dynamically stable and produce a strain that is approximately one-tenth …

AstrofísicaPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveGeneral relativityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Compact star01 natural sciencesGeneral Relativity and Quantum CosmologyArticleGravitational energyNumerical relativityClassical mechanicsTests of general relativity0103 physical sciencesAstronomiaTwo-body problem in general relativityAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGravitational redshift
researchProduct

Revising the observable consequences of slow-roll inflation

2009

We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero variance Delta(2) (k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Delta(2) (k, t). This can (and should) be achieved by proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of…

AstrofísicaPhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Slow roll010308 nuclear & particles physicsFOS: Physical sciencesUnivers inflacionariPrivate communicationGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyManagementHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum mechanics0103 physical sciences010306 general physicsUltraviolet radiationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dynamic transition to spontaneous scalarization in boson stars

2010

We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.

AstrofísicaPhysicsNuclear and High Energy PhysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Scalar bosonGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum CosmologyTheoretical physicsNumerical relativityNeutron starStarsQuantum mechanicsAstronomiaQuantum gravityQuantum field theoryBosonPhysical Review D
researchProduct

Constraint preserving boundary conditions for the Z4c formulation of general relativity

2010

We discuss high order absorbing constraint preserving boundary conditions for the Z4c formulation of general relativity coupled to the moving puncture family of gauges. We are primarily concerned with the constraint preservation and absorption properties of these conditions. In the frozen coefficient approximation, with an appropriate first order pseudo-differential reduction, we show that the constraint subsystem is boundary stable on a four dimensional compact manifold. We analyze the remainder of the initial boundary value problem for a spherical reduction of the Z4c formulation with a particular choice of the puncture gauge. Numerical evidence for the efficacy of the conditions is prese…

AstrofísicaPhysicsNuclear and High Energy PhysicsGeneral relativityMathematical analysisBoundary (topology)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologySymmetry (physics)Constraint (information theory)Numerical relativityTheory of relativityClassical mechanicsAstronomiaCircular symmetryBoundary value problem
researchProduct

The initial boundary value problem for free-evolution formulations of General Relativity

2017

We consider the initial boundary value problem for free-evolution formulations of general relativity coupled to a parametrized family of coordinate conditions that includes both the moving puncture and harmonic gauges. We concentrate primarily on boundaries that are geometrically determined by the outermost normal observer to spacelike slices of the foliation. We present high-order-derivative boundary conditions for the gauge, constraint violating and gravitational wave degrees of freedom of the formulation. Second order derivative boundary conditions are presented in terms of the conformal variables used in numerical relativity simulations. Using Kreiss-Agranovich-Metivier theory we demons…

AstrofísicaPhysicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsGeneral relativityMathematical analysisFOS: Physical sciencesConformal mapGeneral Relativity and Quantum Cosmology (gr-qc)Coordinate conditions01 natural sciencesGeneral Relativity and Quantum CosmologyNonlinear systemNumerical relativityTheory of relativity0103 physical sciencesAstronomiaBoundary value problem010306 general physicsSecond derivative
researchProduct

Regularization of spherical and axisymmetric evolution codes in numerical relativity

2007

Several interesting astrophysical phenomena are symmetric with respect to the rotation axis, like the head-on collision of compact bodies, the collapse and/or accretion of fields with a large variety of geometries, or some forms of gravitational waves. Most current numerical relativity codes, however, can not take advantage of these symmetries due to the fact that singularities in the adapted coordinates, either at the origin or at the axis of symmetry, rapidly cause the simulation to crash. Because of this regularity problem it has become common practice to use full-blown Cartesian three-dimensional codes to simulate axi-symmetric systems. In this work we follow a recent idea idea of Rinne…

AstrofísicaPhysicsPhysics and Astronomy (miscellaneous)Gravitational waveRotational symmetryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologylaw.inventionNumerical relativityClassical mechanicsDifferential geometrylawRegularization (physics)Homogeneous spaceAstronomiaCartesian coordinate systemGravitational singularityGeneral Relativity and Gravitation
researchProduct

Locating ergostar models in parameter space

2020

Recently, we have shown that dynamically stable ergostar solutions (equilibrium neutron stars that contain an ergoregion) with a compressible and causal equation of state exist [A. Tsokaros, M. Ruiz, L. Sun, S. L. Shapiro, and K. Ury\=u, Phys. Rev. Lett. 123, 231103 (2019)]. These stars are hypermassive, differentially rotating, and highly compact. In this work, we make a systematic study of equilibrium models in order to locate the position of ergostars in parameter space. We adopt four equations of state that differ in the matching density of a maximally stiff core. By constructing a large number of models both with uniform and differential rotation of different degrees, we identify the p…

AstrofísicaPhysicsSurface (mathematics)High Energy Astrophysical Phenomena (astro-ph.HE)Equation of state010308 nuclear & particles physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Parameter space01 natural sciencesGeneral Relativity and Quantum CosmologyStarsNeutron starQuark starPosition (vector)0103 physical sciencesDifferential rotationStatistical physics010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Solutions of the Einstein field equations for a bounded and finite discontinuous source, and its generalization: Metric matching conditions and jumpi…

2019

We consider the metrics of the General Relativity, whose energy-momentum tensor has a bounded support where it is continuous except for a finite step across the corresponding boundary surface. As a consequence, the first derivative of the metric across this boundary could perhaps present a finite step too. However, we can assume that the metric is ${\cal C}^1$ class everywhere. In such a case, although the partial second derivatives of the metric exhibit finite (no Dirac $\delta$ functions) discontinuities, the Dirac $\delta$ functions will still appear in the conservation equation of the energy-momentum tensor. As a consequence, strictly speaking, the corresponding metric solutions of the …

AstrofísicaSolutions of the Einstein field equationsPhysicsGravitacióConservation lawPure mathematics010308 nuclear & particles physicsGeneral relativityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationRelativitat general (Física)Bounded function0103 physical sciencesEinstein field equationsPartial derivative010306 general physicsSecond derivativePhysical Review D
researchProduct

Magnetorotational Collapse of Supermassive Stars: Black Hole Formation, Gravitational Waves and Jets

2017

We perform MHD simulations in full GR of uniformly rotating stars that are marginally unstable to collapse. Our simulations model the direct collapse of supermassive stars (SMSs) to seed black holes (BHs) that can grow to become the supermassive BHs at the centers of quasars and AGNs. They also crudely model the collapse of massive Pop III stars to BHs, which could power a fraction of distant, long gamma-ray bursts (GRBs). The initial stellar models we adopt are $\Gamma = 4/3$ polytropes seeded with a dynamically unimportant dipole magnetic field (B field). We treat initial B-field configurations either confined to the stellar interior or extending out from the interior into the stellar ext…

AstrofísicaStar (game theory)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)7. Clean energy01 natural sciencesGeneral Relativity and Quantum CosmologyArticleLuminosity0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Supermassive black hole010308 nuclear & particles physicsTorusQuasarRedshiftBlack hole13. Climate actionAstronomiaAstrophysics - High Energy Astrophysical PhenomenaDimensionless quantity
researchProduct