Search results for "reprogramming"

showing 10 items of 113 documents

Integrating the Tumor Microenvironment into Cancer Therapy

2020

© 2020 by the authors.

0301 basic medicineCancer ResearchMechanotransductionReviewGut floralcsh:RC254-28203 medical and health sciences0302 clinical medicineImmune systemStromamedicineMechanotransductionStromal reprogrammingTumor microenvironmentbiologybusiness.industryMicrobiotaCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasebiology.organism_classificationPrognostic toolsMetforminMitochondria030104 developmental biologyMetabolismOncologyImmune therapyTumor progression030220 oncology & carcinogenesisCancer researchBiomarker discoverybusinessReprogrammingVitamin D3
researchProduct

CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons

2015

Summary Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein exp…

Somatic cellCellular differentiationNerve Tissue ProteinsEndogenyBiologyBiochemistryArticleMiceNeural Stem CellsBasic Helix-Loop-Helix Transcription FactorsGeneticsAnimalslcsh:QH301-705.5NeuronsGene knockdownMessenger RNAlcsh:R5-920Membrane ProteinsCell DifferentiationCell BiologyFibroblastsCellular ReprogrammingEmbryo MammalianEmbryonic stem cellNeural stem cellCell biologylcsh:Biology (General)Astrocytesembryonic structureslcsh:Medicine (General)ReprogrammingDevelopmental BiologyStem Cell Reports
researchProduct

Direct In Vitro Reprogramming of Astrocytes into Induced Neurons

2021

Spontaneous neuronal replacement is almost absent in the postnatal mammalian nervous system. However, several studies have shown that both early postnatal and adult astroglia can be reprogrammed in vitro or in vivo by forced expression of proneural transcription factors, such as Neurogenin-2 or Achaete-scute homolog 1 (Ascl1), to acquire a neuronal fate. The reprogramming process stably induces properties such as distinctly neuronal morphology, expression of neuron-specific proteins, and the gain of mature neuronal functional features. Direct conversion of astroglia into neurons thus possesses potential as a basis for cell-based strategies against neurological diseases. In this chapter, we …

Mammalian nervous systemASCL1medicine.anatomical_structurenervous systemIn vivoFunctional featuresCellmedicineBiologyTranscription factorReprogrammingIn vitroCell biology
researchProduct

Modeling a Novel Variant of Glycogenosis IXa Using a Clonal Inducible Reprogramming System to Generate "Diseased" Hepatocytes for Accurate Diagnosis.

2022

The diagnosis of inherited metabolic disorders is a long and tedious process. The matching of clinical data with a genomic variant in a specific metabolic pathway is an essential step, but the link between a genome and the clinical data is normally difficult, primarily for new missense variants or alterations in intron sequences. Notwithstanding, elucidation of the pathogenicity of a specific variant might be critical for an accurate diagnosis. In this study, we described a novel intronic variant c.2597 + 5G > T in the donor splice sequence of the PHKA2 gene. To investigate PHKA2 mRNA splicing, as well as the functional consequences on glycogen metabolism, we generated hepatocyte-like ce…

BioquímicaBiologiaglycogen; GSD type IX; hepatocyte-like cells; direct reprogramming; high throughputMedicine (miscellaneous)Journal of personalized medicine
researchProduct

Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma.

2017

Hepatocellular carcinomas (HCC) contain a subpopulation of cancer stem cells (CSCs), which exhibit stem cell–like features and are responsible for tumor relapse, metastasis, and chemoresistance. The development of effective treatments for HCC will depend on a molecular-level understanding of the specific pathways driving CSC emergence and stemness. MacroH2A1 is a variant of the histone H2A and an epigenetic regulator of stem-cell function, where it promotes differentiation and, conversely, acts as a barrier to somatic-cell reprogramming. Here, we focused on the role played by the histone variant macroH2A1 as a potential epigenetic factor promoting CSC differentiation. In human HCC section…

0301 basic medicineCarcinoma HepatocellularBiologyMetastasisHistones03 medical and health sciencesCancer stem cellHistone H2AmedicineHumansEpigeneticsPhosphorylationCell ProliferationHepatologyCell growthGene Expression ProfilingLiver NeoplasmsTranscription Factor RelAHep G2 Cellsmedicine.disease030104 developmental biologyHistoneCancer cellCancer researchbiology.proteinNeoplastic Stem CellsReprogrammingHepatology (Baltimore, Md.)
researchProduct

JNK ‐dependent gene regulatory circuitry governs mesenchymal fate

2015

The epithelial to mesenchymal transition (EMT) is a biological process in which cells lose cell-cell contacts and become motile. EMT is used during development, for example, in triggering neural crest migration, and in cancer metastasis. Despite progress, the dynamics of JNK signaling, its role in genomewide transcriptional reprogramming, and involved downstream effectors during EMT remain largely unknown. Here, we show that JNK is not required for initiation, but progression of phenotypic changes associated with EMT. Such dependency resulted from JNK-driven transcriptional reprogramming of critical EMT genes and involved changes in their chromatin state. Furthermore, we identified eight no…

MAP Kinase Kinase 4MAP Kinase Signaling SystemCellular differentiationGene regulatory networkBiologyTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular BiologyCell LineMesodermTranscriptometranscription factorsmetastasisHumansGene Regulatory NetworksEpithelial–mesenchymal transitionMolecular BiologyTranscription factorJNK signalingGeneticsRegulation of gene expressionGeneral Immunology and MicrobiologyGene Expression ProfilingGeneral NeuroscienceCell CycleEMTCell DifferentiationArticles3. Good healthChromatinCell biologyembryonic structuresgene regulationReprogrammingThe EMBO Journal
researchProduct

Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment

2015

Multiple myeloma (MM) is an incurable plasma cell neoplasm accounting for about 10% of all hematologic malignancies. Recently, emerging evidence is disclosing the complexity of bone marrow interactions between MM cells and infiltrating immune cells, which have been reported to promote proliferation, survival and drug resistance of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules with regulatory functions in the cell, whose expression has predictive and prognostic value in different malignancies. MiRNAs are gaining increasing interest due to their capability to polarize the immune-response through different mechanisms, which include the molecular reprogramming of immune cel…

0301 basic medicineCancer Researchmedicine.medical_treatmentCellOsteoclastsAntineoplastic AgentsCD8-Positive T-LymphocytesBiologyBioinformaticsT-Lymphocytes RegulatoryImmunomodulation03 medical and health sciencesTh2 Cells0302 clinical medicineImmune systemBone MarrowDrug DiscoverymicroRNAmedicineHumansMultiple myelomamiRNAPharmacologyImmune-responseTumor immunology.MacrophagesMicroRNADendritic CellsImmunotherapyTh1 CellsPlasma cell neoplasmmedicine.diseaseGene Expression Regulation NeoplasticKiller Cells NaturalMicroRNAs030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisImmunotherapyBone marrowMultiple MyelomaReprogrammingCurrent Cancer Drug Targets
researchProduct

Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy

2017

The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resis…

0301 basic medicineCancer ResearchCell signalingTumor microenvironmentimmune networkReviewBiologymetabolic cooperationcancer cell metabolismWarburg effectCell biology03 medical and health sciences030104 developmental biologyImmune systemOncologyCancer-Associated Fibroblaststumor microenvironmentmetabolic reprogrammingEpigeneticssense organsWarburg effectTranscription factorReprogrammingcancer-associated fibroblastsFrontiers in Oncology
researchProduct

MYC-driven epigenetic reprogramming favors the onset of tumorigensis by inducing a stem cell-like state

2017

AbstractBreast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes resulted difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Over-expression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathw…

medicine.anatomical_structureCell of originCellmedicineTumor initiationEpigeneticsBiologyStem cellEnhancerTranscription factorReprogrammingCell biology
researchProduct

In vivo reprogramming for tissue repair.

2015

Berninger and colleagues define milestones for in vivo reprogramming and discuss recent developments in reprogramming into pancreatic b-cells and neurons. Vital organs such as the pancreas and the brain lack the capacity for effective regeneration. To overcome this limitation, an emerging strategy consists of converting resident tissue-specific cells into the cell types that are lost due to disease by a process called in vivo lineage reprogramming. Here we discuss recent breakthroughs in regenerating pancreatic β-cells and neurons from various cell types, and highlight fundamental challenges that need to be overcome for the translation of in vivo lineage reprogramming into therapy.

Cell typeLineage (genetic)Cell- and Tissue-Based TherapyAcinar CellsBiologyIn vivoInsulin-Secreting CellsmedicineHumansRegenerationCell LineagePancreasNeuronsBrain DiseasesRegeneration (biology)BrainPancreatic DiseasesTranslation (biology)Cell DifferentiationCell BiologyTissue repairCellular ReprogrammingCell biologymedicine.anatomical_structurePancreasReprogrammingNeurogliaNature cell biology
researchProduct