Search results for "resonance"

showing 10 items of 6625 documents

Protonation of Tyrosine Kinase Inhibitor Lapatinib: A Theoretical and Experimental Study

2019

The protonation process of tyrosine kinase inhibitor lapatinib was studied by means of 1HNMR and UV/Vis spectroscopy joint with the theoretical calculations at DFT and semi-empirical levels. DFT/M06-2X geometries were used to describe and compare the different cationic forms of lapatinib, while ZINDO/S-CI method performed on those geometries allowed for the interpretation of experimental UV/Vis spectra of lapatinib at various pH. We found that at low pH two different dicationic forms (N2N1 and N1N3) of lapatinib were present in ethanol and DMSO-d6 solutions. The first protonation, however, occurred on the aliphatic N1 in DMSO-d6, while in ethanol solutions most probably the quinazoline nitr…

010405 organic chemistryChemistryStereochemistrymedicine.drug_classMechanical EngineeringProtonationNuclear magnetic resonance spectroscopy010402 general chemistryLapatinib01 natural sciencesTyrosine-kinase inhibitor0104 chemical sciencesUltraviolet visible spectroscopyMechanics of MaterialsmedicineGeneral Materials Sciencemedicine.drugKey Engineering Materials
researchProduct

Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density

2016

The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increa…

010405 organic chemistryChemistryUNESCO::QUÍMICARelaxation (NMR)Charge densitychemistry.chemical_element010402 general chemistry:QUÍMICA [UNESCO]01 natural sciences0104 chemical sciencesIonInorganic ChemistryCrystallographyMagnetic anisotropyMagnetizationNuclear magnetic resonanceDysprosiumMoleculePhysical and Theoretical ChemistryGround state
researchProduct

Synthesis, molecular structures and EPR spectra of the paramagnetic cuboidal clusters with Mo3S4Ga cores

2017

Electron precise [Mo3(l3-S)(l-S)3(diphos)3Br3]Br (diphos = dppe, dmpe) incomplete cuboidal clusters with six cluster skeletal electrons (CSE) were converted into paramagnetic cuboidal [Mo3(GaBr)(l3-S)4- (diphos)3Br3] clusters by treatment with elemental Ga. The new heterobimetallic complexes with nine CSE possess a doublet ground state with the unpaired electron density delocalized over the three molybdenum atoms.

010405 organic chemistryChemistrychemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciencesCatalysisSpectral line0104 chemical scienceslaw.inventionDelocalized electronParamagnetismCrystallographyUnpaired electronlawComputational chemistryMolybdenumMaterials ChemistryCluster (physics)Ground stateElectron paramagnetic resonance
researchProduct

Equipping metallo-supramolecular macrocycles with functional groups: Assemblies of pyridine-substituted urea ligands

2012

A series of di-(m-pyridyl)-urea ligands were prepared and characterized with respect to their conformations by NOESY experiments and crystallography. Methyl substitution in different positions of the pyridine rings provides control over the position of the pyridine N atoms relative to the urea carbonyl group. The ligands were used to self-assemble metallo-supramolecular M(2)L(2) and M(3)L(3) macrocycles which are generated in a finely balanced equilibrium in DMSO and DMF according to DOSY NMR experiments and ESI FTICR mass spectrometry. Again, crystallography was used to characterize the assemblies. Methyl substitution in positions next to the pyridine nitrogen prevents coordination, while …

010405 organic chemistryHydrogen bondChemistryStereochemistrySupramolecular chemistryurea ligands; metallo-supramolecular macrocycles; X-ray structure; hydrogen-bonding010402 general chemistryMass spectrometry01 natural sciencesFourier transform ion cyclotron resonance0104 chemical sciencesInorganic ChemistrySubstituted ureaCrystallographychemistry.chemical_compoundPyridineUreaTwo-dimensional nuclear magnetic resonance spectroscopyta116Dalton Transactions
researchProduct

Cooperative H-bonds, π⋯π and anion⋯π interactions as driving forces in the construction of novel Cu(II) bis(imidazol-2-yl) supramolecular 3D framewor…

2019

Abstract Two new Cu(II) complexes with bis(2-imidazolyl) based ligands, with the formula [Cu(BIM)2(SCN)2]·2H2O (BIM = bis(2-imidazol-2-yl)methane) and [Cu(HBIMAM)2(OH2)2](BF4)4·2H2O (BIMAM = bis(2-imidazol-2-yl)methylaminomethane) have been synthesized and characterized. Both compounds contain mononuclear entities as molecular building blocks (MBBs); neutral [Cu(BIM)2(SCN)2] in compound 1 and cationic [Cu(HBIMAM)2(OH2)2]4+ in compound 2. The coordination around the metal atoms shows a tetragonally-elongated octahedral geometry (CuN4S2 and CuN4O2 chromophores). The Q-band EPR spectra of both compounds are indicative of an essentially d x 2 - y 2 ground state for copper(II) ions. The analysis…

010405 organic chemistryHydrogen bondChemistrySupramolecular chemistryCrystal structureChromophore010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionInorganic ChemistryMetalCrystallographylawvisual_artOctahedral molecular geometryMaterials Chemistryvisual_art.visual_art_mediumPhysical and Theoretical ChemistryGround stateElectron paramagnetic resonancePolyhedron
researchProduct

Synthesis, Structural and Spectroscopic Characterization of Cr III , Fe III , Co III , Ni II and Cu II Complexes with an Asymmetric 1,3,4‐Thiadiazole…

2016

The reaction of the new asymmetric 1,3,4-thiadiazole-based ligand 2-[(5-ethylthio-1,3,4-thiadiazol-2-yl)hydrazonomethyl]phenol (H1ETHP) with various third-row transition metal salts resulted in the formation of six new mononuclear complexes [Cr(ETHP)2]ClO4 (1), [Fe(ETHP)2][FeCl4] (2), [Co(ETHP)(ETHP–H)] (3), [Ni(ETHP)(H1ETHP)]Cl (4), [Ni(ETHP)(H1ETHP)](ClO4) (5), [Ni(ETHP)(H1ETHP)]Br (6), and one tetranuclear complex [Cu2Cl3(ETHP)(H1ETHP)]2 (7). H1ETHP and all complexes have been analyzed by single crystal X-ray diffraction. Structural analysis of 1–6 reveals complexes of the [ML2]n+-type (n = 0,1), in which the mono anionic ligand ETHP coordinates in a tridentate NNO fashion via its imine,…

010405 organic chemistryHydrogen bondLigandStereochemistryImineSupramolecular chemistry010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryTransition metalTetramerlawMoleculeElectron paramagnetic resonanceEuropean Journal of Inorganic Chemistry
researchProduct

Triorganotin( iv ) cation-promoted dimethyl carbonate synthesis from CO 2 and methanol: solution and solid-state characterization of an unexpected di…

2018

Two novel C,N-chelated organotin(IV) complexes bearing weakly coordinating carborane moieties were prepared by the reaction of the corresponding C,N-chelated organotin(IV) chloride (i.e. LCNR2SnCl, R = n-Bu (1) and Ph (2); LCN = 2-(N,N-dimethylaminomethyl)phenyl)) with monocarba-closo-dodecaborate silver salt (AgCB11H12; Ag·3). Both products of the metathesis, [LCN(n-Bu)2Sn]+[CB11H12]− (4) and [LCNPh2Sn]+ [CB11H12]− (5), respectively, were characterized by both multinuclear NMR spectroscopy and elemental analysis. The instability of 4 and 5 towards water is discussed. The solid-state structure of LCN(n-Bu)2SnOH·B(C6F5)3 (4a) as a model compound with a Sn–O(H)⋯B linkage is also reported. The…

010405 organic chemistryInfrared spectroscopyGeneral ChemistryNuclear magnetic resonance spectroscopy010402 general chemistryMetathesis01 natural sciencesMedicinal chemistryCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryMaterials ChemistryCarborane[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistryMethanolDimethyl carbonateStoichiometryComputingMilieux_MISCELLANEOUS
researchProduct

Ligand Noninnocence in Cobalt Dipyrrin–Bisphenols: Spectroscopic, Electrochemical, and Theoretical Insights Indicating an Emerging Analogy with Corro…

2019

Three cobalt dipyrrin-bisphenol (DPPCo) complexes with different meso-aryl groups (pentafluorophenyl, phenyl, and mesityl) were synthesized and characterized based on their electrochemistry and spectroscopic properties in nonaqueous media. Each DPPCo undergoes multiple oxidations and reductions with the potentials, reversibility, and number of processes depending on the specific solution conditions, the specific macrocyclic substituents, and the type and number of axially coordinated ligands on the central cobalt ion. Theoretical calculations of the compounds with different coordination numbers are given in the current study in order to elucidate the cobalt-ion oxidation state and the innoc…

010405 organic chemistryLigandCoordination numberchemistry.chemical_element010402 general chemistryElectrochemistry01 natural sciences0104 chemical scienceslaw.inventionInorganic ChemistryMetalchemistryOxidation statelawComputational chemistryvisual_artvisual_art.visual_art_mediumMacrocyclic ligandPhysical and Theoretical ChemistryElectron paramagnetic resonanceCobaltInorganic Chemistry
researchProduct

Combination of magnetic susceptibility and electron paramagnetic resonance to monitor the 1D to 2D solid state transformation in flexible metal-organ…

2012

Two families of coordination polymers, {[M(btix)(2)(OH(2))(2)]·2NO(3)·2H(2)O}(n) [M = Co (1), Zn (2), Co-Zn (3); btix = 1,4-bis(triazol-1-ylmethyl)benzene] and {[M(btix)(2)(NO(3))(2)]}(n) [M = Co (4), Zn (5), Co-Zn (6)], have been synthesized and characterized. The two conformations of the ligand, syn and anti, lead to one-dimensional (1D) cationic chains or two-dimensional (2D) neutral grids. Extrusion of the water molecules of the 1D compounds results in an irreversible transformation into the 2D compounds, which involves a change in conformation of the btix ligands and a rearrangement in the metal environment with cleavage and reformation of covalent bonds. This structural transformation…

010405 organic chemistryLigandInorganic chemistry010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical scienceslaw.inventionInorganic ChemistryMetalchemistry.chemical_compoundCrystallographychemistryCovalent bondlawvisual_artvisual_art.visual_art_mediumMoleculeMetal-organic frameworkPhysical and Theoretical ChemistryElectron paramagnetic resonanceBenzeneInorganic chemistry
researchProduct

Structure and properties of a novel staircase-like decanuclear [CuII10] cluster supported by carbonate and carboxylate bridges

2018

This article describes a novel staircase-like decanuclear copper(II) cluster [CuII10(cpdp)4(CO3)4(CH3OH)2]·3.33CH3OH·7.83H2O (1) (H3cpdp = N,N′-bis[2-carboxybenzomethyl]-N,N′-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol) composed of a pair of [CuII5] pentamers. In methanol, the reaction of H3cpdp with Cu(NO3)2·3H2O in the presence of K2CO3 leads to the isolation of complex 1. This complex has been characterized by various analytical techniques including single crystal X-ray crystallography. Structural analysis reveals that the two [CuII5] pentameric units are bridged together exclusively by two μ2:η2:η1 carbonate groups. Complex 1 shows a rare μ3:η2:η1:η1 bridging coordination mode of four b…

010405 organic chemistryLigandInorganic chemistrychemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesCopperCatalysis0104 chemical scienceslaw.inventionMetalchemistry.chemical_compoundCrystallographychemistrylawvisual_artMaterials Chemistryvisual_art.visual_art_mediumCarboxylateCyclic voltammetryElectron paramagnetic resonanceSingle crystalNew Journal of Chemistry
researchProduct