Search results for "resonator"
showing 10 items of 193 documents
Quantum simulation of the spin-boson model with a microwave circuit
2017
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed …
Coupling evanescently low loss Silicon-on-insulator ridge waveguides including high Q nanocavities for light control
2011
Summary form only given. In this work, we propose an innovative way to achieve an air-slotted nanocavities by coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities exhibiting an ultrasmall modal volume V. We first show that coupling two WGs allows us to achieve a field confinement within the air slot as low as lambda/30 while preserving a high group index of the guided modes. Then we demonstrate that merging such coupled WGs with state-of-the-art high-Q/small V nanocavities is a robust way to achieve a single compact (1 µm × 3 µm) air-slotted resonator on substrate. Finally, we extend the concept to multiple air-slotted resonator syste…
Aluminum Plasmonics: Fabrication and Characterization of Broadly Tunable Plasmonic Surfaces for Plasmon Molecule Strong-Coupling and Fluorescence Enh…
2018
Our work based on previous studies [1, 2] confirms, that simple aluminum nanostructures can be utilized as effective plasmonic resonators over a broad range of frequencies and wavelengths. The nanostructured surfaces, fabricated by electron-beam lithography demonstrated relatively narrow-band resonances and are suitable for various plasmonic applications ranging from metal enhanced fluorescence to strong-coupling [1, 2, 3, 4, 5] experiments. We represent data for molecule-plasmon coupling near the strong coupling limit and demonstrate that these aluminum structures do act as fluorescence increasing substrates. In this work, we used two different types of dyes. We studied the narrow band j-a…
Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9O20
1983
A single-crystal X-ray study of dibarium nonatitanate, Ba2Ti9O20, yielded the triclinic space group P 1 with a=0.7471(1), b= 1.4081(2), c= 1.4344(2) nm, α=89.94(2)°, β= 79.43(2)°, γ= 84.45(2)°, V = 1.476 nm3 Z = 4, and Dx= 4.61 Mg/m3. A refinement of atomic coordinates and isotropic thermal parameters led to a residual of 0.03. The structure consists of hexagonally closest-packed layers of Ba and O atoms in the sequence (hch)3. All Ti atoms reside in octahedral interstices of this closest packing. The various Ti coordination octahedra share only edges and corners with each other. One-half of the Ba atoms is twelve-coordinated by oxygen atoms, the other half is eleven-coordinated.
ChemInform Abstract: Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9O20.
1983
A single-crystal X-ray study of dibarium nonatitanate, Ba2Ti9O20, yielded the triclinic space group P 1 with a=0.7471(1), b= 1.4081(2), c= 1.4344(2) nm, α=89.94(2)°, β= 79.43(2)°, γ= 84.45(2)°, V = 1.476 nm3 Z = 4, and Dx= 4.61 Mg/m3. A refinement of atomic coordinates and isotropic thermal parameters led to a residual of 0.03. The structure consists of hexagonally closest-packed layers of Ba and O atoms in the sequence (hch)3. All Ti atoms reside in octahedral interstices of this closest packing. The various Ti coordination octahedra share only edges and corners with each other. One-half of the Ba atoms is twelve-coordinated by oxygen atoms, the other half is eleven-coordinated.
Optically Forged Diffraction-Unlimited Ripples in Graphene
2018
In nanofabrication, just as in any other craft, the scale of spatial details is limited by the dimensions of the tool at hand. For example, the smallest details for direct laser writing with far-field light are set by the diffraction limit, which is approximately half of the used wavelength. In this work, we overcome this universal assertion by optically forging graphene ripples that show features with dimensions unlimited by diffraction. Thin sheet elasticity simulations suggest that the scaled-down ripples originate from the interplay between substrate adhesion, in-plane strain, and circular symmetry. The optical forging technique thus offers an accurate way to modify and shape two-dimens…
<title>Angular selectivity of thin gratings</title>
2005
The angular selectivity of thin gratings is studied both experimentally and theoretically. The concepts of thick and thin gratings are analyzed. Thin holographic gratings recorded in a-As-S-Se films have exhibited pronounced and oscillatory diffraction efficiency angular dependences. These results are explained by the obliquity factor in Fresnel-Kirchhof diffraction integral and by finite beam and grating sizes. It is also shown that oscillatory diffraction efficiency angular dependences, most probably, arise due to the interference of diffracted waves of different orders because dephasing can be significant for small grating strengths and large enough readout angles. Fabry-Perot resonator …
Experimental demonstration of hyperbolic patterns.
2008
We give experimental evidence of hyperbolic patterns in a nonlinear optical resonator. Such transverse patterns are a new kind of 2D dissipative structures, characterized by a distribution of the active modes along hyperbolas in the transverse wave-vector domain, in contrast with the usual (elliptic) patterns where the active modes distribute along rings. The hyperbolic character is realized by manipulating diffraction inside the optical resonator with cylindrical lenses. We also investigate theoretically hyperbolic patterns in corresponding Swift-Hohenberg models.
A Novel Technique for Deembeding the Unloaded Resonance Frequency from Measurements of Microwave Cavities
2006
[EN] A novel technique to extract the influence of coupling networks on the resonant frequency of cavities in one-port measurements is presented. The determination of the unloaded resonant frequency is performed directly from measurements without either the need to obtain the electromagnetic fields in the resonator or to deembed the delay of transmission lines from the measuring equipment to the resonator. The importance of the Foster's form on the modeling of the frequency detuning of the resonators is also discussed and a criterion for the choice of the appropriate Foster's form is suggested. The procedure is validated with simulations and experimental measurements of manufactured cavities
A new empirical method for extracting unloaded resonant frequencies from microwave resonant cavities
2003
Equivalent circuits traditionally used to model resonators and coupling networks in the vicinity of a resonance provide values of unloaded resonant frequencies which usually do not agree with experimental results. A new empirical method for the extraction of influence of coupling networks on resonant cavities is presented. The characterization of coupling structures is performed directly from measurements without the need of obtaining the electromagnetic fields inside the cavity, which is very interesting from a practical point of view. Results are validated with simulations and experimental measurements. The accuracy of some cavity applications, such as dielectric characterization techniqu…