Search results for "ribostasis"

showing 2 items of 2 documents

Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures

2016

To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilitySaccharomyces cerevisiaeBiophysicsSaccharomyces cerevisiaeProtein degradationBiochemistryRibosomeRibostasis03 medical and health sciencesStructural BiologyGene Expression Regulation FungalGene expressionProtein stabilityGeneticsProtein biosynthesisHomeostasisRNA MessengerMolecular BiologyRegulation of gene expressionTranslation ratebiologyTemperaturebiology.organism_classificationYeastYeastCell biology030104 developmental biologyProteostasisBiochemistryProtein BiosynthesisProteostasisRibosomes
researchProduct

Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability

2019

Cell survival requires the control of biomolecule concentration, i.e. biomolecules should approach homeostasis. With information-carrying macromolecules, the particular concentration variation ranges depend on each type: DNA is not buffered, but mRNA and protein concentrations are homeostatically controlled, which leads to the ribostasis and proteostasis concepts. In recent years, we have studied the particular features of mRNA ribostasis and proteostasis in the model organism S. cerevisiae. Here we extend this study by comparing published data from three other model organisms: E. coli, S. pombe and cultured human cells. We describe how mRNA ribostasis is less strict than proteostasis. A co…

TranslationTranscription GeneticEvolutionRNA Stabilityved/biology.organism_classification_rank.speciestranslationCentral dogma of molecular biologySaccharomyces cerevisiaeBiologyRibostasisEvolution Molecular03 medical and health scienceschemistry.chemical_compound0302 clinical medicineTranscription (biology)evolutionSchizosaccharomycesmrna stabilityProtein stabilityEscherichia coliHomeostasisHumansRNA MessengerModel organismribostasisMolecular BiologyPoint of View030304 developmental biologyRegulation of gene expression0303 health sciencesMessenger RNAproteostasisved/biologyCell growthProteinsCell BiologyDNACell biologyProteostasischemistryprotein stabilityGene Expression Regulation030220 oncology & carcinogenesisProteostasisTranscriptionDNAHeLa Cells
researchProduct