Search results for "rings"
showing 10 items of 434 documents
Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C23…
2009
The crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material. The molecules form an efficient dense packing, which explains the observed insolubility and weather fastness of the pigment. The pair-distribution function (PDF) of the alpha phase is consistent with the determined crystal structure. The beta phase of P.Y. 213 shows even lower crystal quality, so extracting any structural information directly from the diffraction data is not possible. PDF analysis indicates the beta phase to have a columnar structure with a si…
Masculine (Low) Digit Ratios Predict Masculine Food Choices in Hungry Consumers
2021
Abstract This study investigated the link between individuals’ 2D:4D digit ratio (a biomarker associated with prenatal testosterone exposure) and their inclination to make masculine food choices. Furthermore, the study investigated whether this potential association would be moderated by consumers’ levels of hunger (vs. satiation). Participants (N = 216; 50% female) made a set of binary food choices between items pretested to be perceived as masculine (vs. feminine) and indicated the lengths of their second (2D) and fourth (4D) digits (i.e., index and ring fingers), which were used to calculate their 2D:4D digit ratios. Additionally, they self-reported their self-perceived gender identity a…
Fully representable and*-semisimple topological partial*-algebras
2012
We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …
Combinatorial isomorphism between Fibonacci classes
2008
Abstract In 1985 Simion and Schmidt showed that the set S n (T 3) of length n permutations avoiding the set of patterns T 3={123, 132, 213} is counted by (the second order) Fibonacci numbers. They also presented a constructive bijection between the set F n–1 of length (n–1) binary strings with no two consecutive 1s and S n (T 3). In 2005, Egge and Mansour generalized the first Simion-Simion’s result and showed that S n (T p ), the set of permutations avoiding the patterns T p ={12…p, 132, 213}, is counted by the (p–1)th order Fibonacci numbers. In this paper we extend the second Simion-Schmidt’s result by giving a bijection between the set of length (n–1) binary strings with no (p–1) consec…
Some results concerning simple locally finite groups of 1-type
2005
AbstractIn this paper several aspects of infinite simple locally finite groups of 1-type are considered. In the first part, the classes of diagonal limits of finite alternating groups, of diagonal limits of finite direct products of alternating groups, and of absolutely simple groups of 1-type are distinguished from each other. In the second part, inductive systems of representations over fields of characteristic zero (which are known to correspond to ideals in the group algebra) are studied in general for groups of 1-type. The roles of primitive respectively imprimitive representations in inductive systems are investigated. Moreover it is shown that in any proper inductive system the depth…
Root-restricted Kleenean rotations
2010
We generalize the Kleene theorem to the case where nonassociative products are used. For this purpose, we apply rotations restricted to the root of binary trees.
Verbal sets and cyclic coverings
2010
Abstract We consider groups G such that the set of all values of a fixed word w in G is covered by a finite set of cyclic subgroups. Fernandez-Alcober and Shumyatsky studied such groups in the case when w is the word [ x 1 , x 2 ] , and proved that in this case the corresponding verbal subgroup G ′ is either cyclic or finite. Answering a question asked by them, we show that this is far from being the general rule. However, we prove a weaker form of their result in the case when w is either a lower commutator word or a non-commutator word, showing that in the given hypothesis the verbal subgroup w ( G ) must be finite-by-cyclic. Even this weaker conclusion is not universally valid: it fails …
A natural and rigid model of quantum groups
1992
We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.
Periodicity and repetitions in parameterized strings
2008
AbstractOne of the most beautiful and useful notions in the Mathematical Theory of Strings is that of a Period, i.e., an initial piece of a given string that can generate that string by repeating itself at regular intervals. Periods have an elegant mathematical structure and a wealth of applications [F. Mignosi and A. Restivo, Periodicity, Algebraic Combinatorics on Words, in: M. Lothaire (Ed.), Cambridge University Press, Cambridge, pp. 237–274, 2002]. At the hearth of their theory, there are two Periodicity Lemmas: one due to Lyndon and Schutzenberger [The equation aM=bNcP in a free group, Michigan Math. J. 9 (1962) 289–298], referred to as the Weak Version, and the other due to Fine and …
A General Algorithm to Calculate the Inverse Principal $p$-th Root of Symmetric Positive Definite Matrices
2019
We address the general mathematical problem of computing the inverse p-th root of a given matrix in an efficient way. A new method to construct iteration functions that allow calculating arbitrary p-th roots and their inverses of symmetric positive definite matrices is presented. We show that the order of convergence is at least quadratic and that adaptively adjusting a parameter q always leads to an even faster convergence. In this way, a better performance than with previously known iteration schemes is achieved. The efficiency of the iterative functions is demonstrated for various matrices with different densities, condition numbers and spectral radii.