Search results for "rotu"
showing 10 items of 642 documents
Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium
2015
Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently in…
BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism
2015
Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was …
Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease
2016
International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …
Progressive Characterization of Visual Phenotype in Bardet-Biedl Syndrome Mutant Mice
2019
Purpose Bardet-Biedl syndrome (BBS) is an archetypical ciliopathy caused by defective ciliary trafficking and consequent function. Insights gained from BBS mouse models are applicable to other syndromic and nonsyndromic retinal diseases. This progressive characterization of the visual phenotype in three BBS mouse models sets a baseline for testing therapeutic interventions. Methods Longitudinal acquisition of electroretinograms, optical coherence tomography scans, and visual acuity using the optomotor reflex in Bbs6/Mkks, Bbs8/Ttc8, and Bbs5 knockout mice. Gene and protein expression analysis in vivo and in vitro. Results Complete loss of BBS5, BBS6, or BBS8 leads to different rates of reti…
Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo
2017
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis …
Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium.
2017
Abstract Gadolinium (Gd) concentration is constantly increasing in the aquatic environment, becoming an emergent environmental pollutant. We investigated the effects of Gd on Paracentrotus lividus sea urchin embryos, focusing on skeletogenesis and autophagy. We observed a delay of biomineral deposition at 24 hours post fertilization (hpf), and a strong impairment of skeleton growth at 48 hpf, frequently displayed by an asymmetrical pattern. Skeleton growth was found partially resumed in recovery experiments. The mesodermal cells designated to biomineralization were found correctly migrated at 24 hpf, but not at 48 hpf. Western blot analysis showed an increase of the LC3-II autophagic marker…
Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus
2018
With the aim to obtain new antimicrobials against important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, we focused on antimicrobial peptides (AMPs) from Echinoderms. An example of such peptides is Paracentrin 1 (SP1), a chemically synthesised peptide fragment of a sea urchin thymosin. In the present paper, we report on the biological activity of a Paracentrin 1 derivative obtained by recombination. The recombinant paracentrin RP1, in comparison to the synthetic SP1, is 22 amino acids longer and it was considerably more active against the planktonic forms of S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 at concentrations of 50 µ
MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.
2018
The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…
Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species
2018
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24 h post-fertilization, and a strong inhibition of skeleton growth at 48 h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in C…
An overview on anti-tubulin agents for the treatment of lymphoma patients
2020
Anti-tubulin agents constitute a large class of compounds with broad activity both in solid tumors and hematologic malignancies, due to the interference with microtubule dynamics. Since microtubules play crucial roles in the regulation of the mitotic spindles, the interference with their function usually leads to a block in cell division with arrest at the metaphase/anaphase junction of mitosis, followed to apoptosis. This explains the reason why tubulin-binding agents (TBAs) proved to be extremely active in patients with cancer. Several anti-tubulin agents are indicated in the treatment of patients with lymphomas both alone and in combination chemotherapy regimens. The article reviews the …