Search results for "second-harmonic"
showing 10 items of 121 documents
ChemInform Abstract: Electron Crystallography and Organic Materials with Non-Linear Optical Properties
2010
Results of electron microscopic studies of crystal structures of a number of bis-benzylidene cyclohexanones are presented. It is shown that some of these compounds are efficient crystalline non-linear optically active (NLO) chromophores with second harmonic generation (SHG) properties. Appropriately functionalized chromophores of this type can be used as a polycondensation comonomer to produce partly crystalline main-chain NLO-active polymers. Electron diffraction crystal structural data, obtained for very small crystals, allowed us to get reasonable estimations of macroscopic crystal NLO-coefficients, relating quantum-chemically calculated molecular first hyperpolarizability components to …
Quadratic Nonlinear Behaviour of Various Langmuir-Blodgett Molecules
1989
The Langmuir-Blodgett (L-B) technique is well known as a method of building-up ordered arrays of organic molecules, and especially as a means of imposing a noncentrosymmetric structure from molecules that crystallize in a centrosymmetric space group(1–3). L-B films for use in quadratic nonlinear optics can be ordered in a statistically noncentrosymmetric lattice. The method involves the compression of a mono-layer of the organic molecule, spread on top of a water surface, into a two-dimensional solid, followed by the repeated dipping of the substrate to be coated into and out of the subphase. Monolayers may be deposited onto the substrate both on immersion and withdrawal, resulting in a cen…
Second harmonic generation in ferroelectric liquid crystalline thiadiazole derivatives
1995
Diffractive optics for spectral tuning of second harmonic and supercontinuum generated in nonlinear crystals
2011
It is shown that diffractive lenses can tune the spectrum of femtosecond pulses after nonlinear optical processes. We focus on spectra of second-order pulses generated in birefringent crystals and supercontinuum in sapphire crystals. The tunability is achieved by changing the relative distance between the nonlinear crystal and the diffractive lens.
Dispersion Compensation in Holograms Reconstructed by Femtosecond Light Pulses
2014
This chapter describes how the spatiotemporal dispersion associated with the diffraction of broadband femtosecond light pulses through computer generated holograms (CGHs) can be compensated to a first order with a properly designed dispersion compensation module (DCM). The angular dispersion of the beam associated to CGHs leads to both spatial and temporal distortion of the pulse. Some experiments in one-shot second harmonic generation, wide-field two-photon microscopy, and parallel micromachining are shown to study the quality of the compensation performed with the DCM.
Silencing and enhancement of second-harmonic generation in optical gap antennas
2012
International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a…
Directional Second Harmonic Generation Controlled by Sub-wavelength Facets of an Organic Mesowire
2018
Directional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second harmonic generation (SHG) in the forward scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with subwavelength facets. We observed that the radial angles of the SHG emission can be tuned over a range of 130 degrees. This angular variation arises due to spatially distributed nonlinear dipoles in the focal volume of the excit…
High efficiency frequency doubling in fully diced LiNbO3ridge waveguides on silicon
2016
Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only the use of a precision dicing machine without the need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. The influence of the geometrical non uniformities of waveguides due to fabrication processes is asserted. Characteristics of the components are studied; notably their robustness and tunability versus temperature.
Towards CEP stable, single-cycle pulse compression with bulk material
2010
We demonstrate both experimentally and numerically that self-steepening during propagation in a hollow-fiber followed by linear propagation through glass in the anomalous dispersion enables pulse compression down to 1.6 cycles at 1.8 µm wavelength.
Experimental properties of parabolic pulses generated via Raman amplification in standard optical fibers
2004
Parabolic pulses at 1550 nm have been generated in a standard telecommunications fiber using Raman amplification. The parabolic output pulse characteristics are studied as a function of input pulse energy and duration.