Search results for "sensi"

showing 10 items of 5553 documents

Injection and ultrafast regeneration in dye-sensitized solar cells

2014

Injection of an electron from the excited dye molecule to the semiconductor is the initial charge separation step in dye-sensitized solar cells (DSC's). Though the dynamics of the forward injection process has been widely studied, the results reported so far are controversial, especially for complete DSC's. In this work, the electron injection in titanium dioxide (TiO2) films sensitized with ruthenium bipyridyl dyes N3 and N719 was studied both in neat solvent and in a typical iodide/triiodide (I-/I3 -) DSC electrolyte. Transient absorption (TA) spectroscopy was used to monitor both the formation of the oxidized dye and the arrival of injected electrons to the conduction band of TiO2. Emiss…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyta221Analytical chemistrychemistry.chemical_elementElectrolyteNanosecondPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRutheniumDye-sensitized solar cellchemistry.chemical_compoundGeneral EnergychemistryPicosecondTitanium dioxideUltrafast laser spectroscopySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryTriiodideta116
researchProduct

A combined three-dimensional digitisation and subsurface defect detection data using active infrared thermography

2016

International audience; In recent years, NonDestructive Testing (NDT) systems have been upgraded with three-dimensional information. Indeed, combine the three-dimensional and thermal information allows a more meaningful analysis. In the literature, the data for NDT and three-dimensional (3D) reconstruction analysis are commonly acquired from independent systems. However, the use of two such systems leads to error analysis during the data registration. In an attempt to overcome such problems, we propose a single system based on active thermography approach using heat point-source stimulation to get the 3D digitization as well as subsurface defect detection. The experiments are conducted on s…

010302 applied physicsActive infraredbusiness.industryComputer science[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesError analysisNondestructive testing0103 physical sciencesThermographyData registrationbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing010301 acousticsDigitization[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingRemote sensing
researchProduct

Optimum Design and Performance of an Electron Gun for a Ka-Band TWT

2019

This paper deals with optimum design and development of a thermionic electron gun to meet specified beam requirements within defined electric and geometric constraints for a Ka -band traveling wave tube (TWT) for space applications. The electron gun design is based on the Pierce method and carried out according to the iterative process indicated by Vaughan. The design of a periodic permanent magnet (PPM) beam focusing system for the stability of the beam is also required. A sensitivity analysis, by varying electric parameters and geometric parameters, is presented and taken into account as a fundamental role to the aim of optimizing the design of the Pierce gun. A cathode current value of 5…

010302 applied physicsBeam diameterMaterials sciencebusiness.industryTraveling-wave tubeSettore ING-INF/01 - Elettronica01 natural sciencesCathodeElectronic Optical and Magnetic Materialslaw.inventionSettore ING-IND/31 - ElettrotecnicaOpticslawcontrol grid electron gun PPM focusing system sensitivity analysis shadow grid TWTMagnet0103 physical sciencesKa bandElectrical and Electronic EngineeringbusinessBeam (structure)VoltageElectron gunIEEE Transactions on Electron Devices
researchProduct

A Novel Method for Characterizing Temperature Sensitivity of Silicon Wafers and Cells

2019

In this paper, we present a novel method to obtain temperature dependent lifetime and implied-open-circuit voltage (iV OC ) images of silicon wafers and solar cells. First, the method is validated by comparing the obtained values with global values acquired from lifetime measurements (for wafers) and current-voltage measurements (for cells). The method is then extended to acquire spatially resolved images of iV OC temperature coefficients of silicon wafers and cells. Potential applications of the proposed method are demonstrated by investigating the temperature coefficients of various regions across multi-crystalline silicon wafers and cells from different heights of two bricks with differe…

010302 applied physicsBrickTemperature sensitivityMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesReduced propertiesImpurity0103 physical sciencesOptoelectronicsWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Partial discharges behavior under different rectified waveforms

2017

In this work, a previous software used to simulate partial discharges (PDs) under Alternating Current (AC) stress has been modified in order to evaluate the PDs behavior under a voltage stress close to the Direct Current (DC) waveform. By using a full-wave and a half-wave rectifier, the specimen with an air void defects has been subjected to a gradual constant stress. Finally, a capacitive filter has been inserted in order to produce a steadier voltage supply. Simulation results show that under an almost DC waveform, the PDs activity become less compared to AC stress.

010302 applied physicsDC stressMaterials scienceHVDCPD modelbusiness.industryAcousticsCapacitive sensingDirect currentElectrical engineeringRectified waveform01 natural sciencesSpace charge010305 fluids & plasmaslaw.inventionStress (mechanics)RectifierSettore ING-IND/31 - Elettrotecnicalaw0103 physical sciencesWaveformPartial DischargebusinessAlternating currentVoltage
researchProduct

The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges

2017

Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCapacitive sensingAnalytical chemistry02 engineering and technologyPlasma021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionCrystallinity0103 physical sciencesDeposition (phase transition)plasma modesCapacitively coupled plasmaRadio frequency0210 nano-technologyplasma-enhanced atomic layer deposition
researchProduct

A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions

2019

Single-ion sensitivity is obtained in precision Penning-trap experiments devoted to light (anti)particles or ions with low mass-to-charge ratios, by adding an inductance coil to an amplifier connected to the trap, both operated at 4 K. However, single-ion sensitivity has not been reached on heavy singly or doubly charged ions. In this publication, we present a new system to reach this point, based on the use of a quartz crystal as an inductance, together with a newly developed broad-band (BB) amplifier. We detect the reduced-cyclotron frequency of 40Ca+ ions stored in a 7-tesla open-ring Penning trap. By comparing the detected electric signal obtained with the BB amplifier and the fluoresce…

010302 applied physicsMaterials scienceEquivalent series resistanceAmplifierPenning trap01 natural sciences7. Clean energySignalFourier transform ion cyclotron resonance010305 fluids & plasmasIonCrystal0103 physical sciencesAtomic physicsInstrumentationSensitivity (electronics)Review of Scientific Instruments
researchProduct

How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers

2019

The temperature sensitivity of the open circuit voltage of a solar cell is mainly driven by changes in the intrinsic carrier concentration, but also by the temperature dependence of the limiting recombination mechanisms in the cell. This paper investigates the influence of recombination through metallic impurities on the temperature sensitivity of multicrystalline silicon wafers. Spatially resolved temperature dependent analysis is performed to evaluate the temperature sensitivity of wafers from different brick positions before and after being subjected to phosphorus diffusion gettering. Local spatial analysis is performed on intra-grain areas, dislocation clusters and grain boundaries. Lar…

010302 applied physicsMaterials scienceOpen-circuit voltagebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionGetterlaw0103 physical sciencesSolar cellOptoelectronicsGrain boundaryWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessRecombination2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Temperature Dependent Suns-V<inf>oc</inf> of Multicrystalline Silicon Solar Cells from Different Ingot Positions

2018

This paper presents temperature dependent Suns- Voc measurements on multicrystalline silicon cells originating from different ingot positions. The effective lifetime is found to increase for all cells when the temperature is increased from 25°C to 6°C. However, cells from the top of the ingot show a considerably larger increas 40–50% for illumination conditions of 0.1-1 Sun, compared to an increase of 20-30% observed for cells from the bottom. The decrease in Voc with increasing temperature is found to be lower for cells from the top of the ingot compared to cells from the bottom. The temperature coefficient of the Voc is found to vary 5% along the ingot at 1 Sun, highlighting the influence…

010302 applied physicsMaterials scienceSiliconbusiness.industry020209 energyPhotovoltaic systemchemistry.chemical_element02 engineering and technologySuns in alchemy01 natural sciencesTemperature measurementchemistry0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsIngotbusinessTemperature coefficientSensitivity (electronics)2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
researchProduct

Choice of the detectors for light impurities plasma studies at W7-X using ‘CO Monitor’ system

2019

Abstarct The ‘CO Monitor’ is a new spectrometer system dedicated for the continuous measurements of line intensities of carbon, oxygen, boron and nitrogen at the fusion plasma experiment Wendelstein 7-X (W7-X). Its main purpose is to deliver constant information about indicated elements with high time resolution (better than 1 ms), but low spatial resolution since the line shapes are not going to be investigated. The system consists of four independent channels, each equipped with dispersive element dedicated for measurement of selected line of interest. In order to perform the highest efficiency of the ‘CO Monitor’ system, it is essential to choose the proper detector type for this task. T…

010302 applied physicsMaterials scienceSpectrometerbusiness.industryMechanical EngineeringDetectorPhase (waves)PlasmaElectronXUVDetectorsWendelstein 7-XStellarator01 natural sciencesLine (electrical engineering)010305 fluids & plasmasOpticsNuclear Energy and Engineering0103 physical sciencesGeneral Materials SciencebusinessSensitivity (electronics)Image resolutionCivil and Structural EngineeringFusion Engineering and Design
researchProduct