Search results for "shoot"
showing 10 items of 298 documents
Latvijas Vēstures Institūta Žurnāls. 2013, Nr. 1 (86)
2013
Sampling procedure in a willow plantation for estimation of moisture content
2015
Abstract Heating value and fuel quality of wood is closely connected to moisture content. In this work the variation of moisture content (MC) of short rotation coppice (SRC) willow shoots is described for five clones during one harvesting season. Subsequently an appropriate sampling procedure minimising labour costs and sampling uncertainty is proposed, where the MC of a single stem section with the length of 10–50 cm corresponds to the mean shoot moisture content (MSMC) with a bias of maximum 11 g kg −1 . This bias can be reduced by selecting the stem section according to the particular clone. The average difference in MSMC between the largest and smallest shoot in a stump was 31 g kg −1 .…
Méthodes géometriques en mécanique spatiale et aspects numériques
2005
We present in this thesis two research projectson the optimal control of the space vehicles.In the first, we have dealt with the orbit transferproblem. We study the minimum time control of a satellite that we want to reach a geostationary orbit. Our contribution is of two kinds. Geometric, first, since we study the controllability of the system together with the geometry of the transfer (structure of the command) by means of geometric control without state constraint tools (minimum principle). Then we present shootingalgorithm and homotopy method. These approaches allow the numerical resolution of problems with strong or low thrust satellites.The second project concerns to the calculation o…
Optimal control of the atmospheric arc of a space shuttle and numerical simulations with multiple-shooting method
2005
This article, continuation of previous works, presents the applications of geometric optimal control theory to the analysis of the Earth re-entry problem for a space shuttle where the control is the angle of bank, the cost is the total amount of thermal flux, and the system is subject to state constraints on the thermal flux, the normal acceleration and the dynamic pressure. Our analysis is based on the evaluation of the reachable set using the maximum principle and direct computations with the boundary conditions according to the CNES research project\footnote{The project is partially supported by the Centre National d'Etude Spatiales.}. The optimal solution is approximated by a concatenat…
3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust
2003
The minimum-time transfer of a satellite from a low and eccentric initial orbit toward a high geostationary orbit is considered. This study is preliminary to the analysis of similar transfer cases with more complicated performance indexes (maximization of payload, for instance). The orbital inclination of the spacecraft is taken into account (3D model), and the thrust available is assumed to be very small (e.g. 0.3 Newton for an initial mass of 1500 kg). For this reason, many revolutions are required to achieve the transfer and the problem becomes very oscillatory. In order to solve it numerically, an optimal control model is investigated and a homotopic procedure is introduced, namely cont…
On local optima in minimum time control of the restricted three-body problem
2016
International audience; The structure of local minima for time minimization in the controlled three-body problem is studied. Several homotopies are systematically used to unfold the structure of these local minimizers, and the resulting singularity of the path associated with the value function is analyzed numerically.
Regularization of chattering phenomena via bounded variation controls
2018
In control theory, the term chattering is used to refer to strong oscillations of controls, such as an infinite number of switchings over a compact interval of times. In this paper we focus on three typical occurences of chattering: the Fuller phenomenon, referring to situations where an optimal control switches an infinite number of times over a compact set; the Robbins phenomenon, concerning optimal control problems with state constraints, meaning that the optimal trajectory touches the boundary of the constraint set an infinite number of times over a compact time interval; the Zeno phenomenon, referring as well to an infinite number of switchings over a compact set, for hybrid optimal co…
On the optimal control of the circular restricted three body problem
2011
The context of this work is space mechanics. More precisely, we aim at computing low thrust transfers in the Earth-Moon system modeled by the circular restricted three-body problem. The goal is to calculate the optimal steering of the spacecraft engine with respect to two optimization criteria: Final time and fuel consumption. The contributions of this thesis are of two kinds. Geometric, first, as we study the controllability of the system together with the geometry of the transfers (structure of the command) by means of geometric control tools. Numerical, then, different homotopic methods being developed. A two-three body continuation is used to compute minimum time trajectories, and then …
Optimal control with state constraints and the space shuttle re-entry problem
2003
In this article, we initialize the analysis under generic assumptions of the small \textit{time optimal synthesis} for single input systems with \textit{state constraints}. We use geometric methods to evaluate \textit{the small time reachable set} and necessary optimality conditions. Our work is motivated by the \textit{optimal control of the atmospheric arc for the re-entry of a space shuttle}, where the vehicle is subject to constraints on the thermal flux and on the normal acceleration. A \textit{multiple shooting technique} is finally applied to compute the optimal longitudinal arc.
A combination of algebraic, geometric and numerical methods in the contrast problem by saturation in magnetic resonance imaging
2014
In this article, the contrast imaging problem by saturation in nuclear magnetic resonance is modeled as a Mayer problem in optimal control. The optimal solution can be found as an extremal solution of the Maximum Principle and analyzed with the recent advanced techniques of geometric optimal control. This leads to a numerical investigation based on shooting and continuation methods implemented in the HamPath software. The results are compared with a direct approach to the optimization problem and implemented within the Bocop toolbox. In complement lmi techniques are used to estimate a global optimum. It is completed with the analysis of the saturation problem of an ensemble of spin particle…