Search results for "siRNA."

showing 10 items of 63 documents

Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance.

2000

AbstractPosttranscriptional gene silencing (PTGS) in plants results from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, d…

0106 biological sciencesRNA-induced transcriptional silencingDNA PlantRNA-induced silencing complexTrans-acting siRNAMolecular Sequence DataPotyvirusArabidopsisRNA-dependent RNA polymerase[SDV.BC]Life Sciences [q-bio]/Cellular BiologyGenes Plant01 natural sciencesCucumovirusGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesSolanum lycopersicumRNA interferenceArabidopsisGene expressionGene silencingAmino Acid SequenceGene SilencingCloning MolecularRNA Processing Post-Transcriptional[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biologyPlant DiseasesPlant ProteinsGenetics0303 health sciencesbiologyBase SequenceBiochemistry Genetics and Molecular Biology(all)Arabidopsis ProteinsfungiTobamovirusChromosome MappingGENETIQUEbiology.organism_classificationRNA-Dependent RNA PolymeraseMutagenesis010606 plant biology & botanyCell
researchProduct

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…

2019

Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…

0301 basic medicineClinical BiochemistryLFQ Label-free quantificationLETM Leucine zipper and EF-hand containing transmembrane proteinmedicine.disease_causeBiochemistryCHX Cycloheximide0302 clinical medicineBNIP3 Bcl-2 interacting protein 3RAPA RapamycinPIK3C3 Class III PI3‐kinasePhosphorylationlcsh:QH301-705.5Neuronslcsh:R5-920PolyUB PolyubiquitinChemistryBAG3OPA1 Optic atrophy 1TOR Serine-Threonine KinasesWIPI1 WD repeat domain phosphoinositide-interacting protein 1ATG Autophagy relatedTFEB Transcription factor EBCell biologyMitochondriasiRNA Small interfering RNADLP1 Dynamin-like protein 1LAMP1 Lysosomal‐associated membrane protein 1PURO Puromycinlcsh:Medicine (General)Protein homeostasisResearch PaperBafA1 Bafilomycin A1LAMP2 Lysosomal‐associated membrane protein 2Proteasome Endopeptidase ComplexRAB18 Member RAS oncogeneTUB TubulinLC3 Light chain 3 proteinOxidative phosphorylationBAG3CTSD Cathepsin DModels BiologicalCell Line03 medical and health sciencesDownregulation and upregulationMacroautophagymedicineAutophagyHumansAdaptationBAG1 Bcl-2-associated athanogene 1BECN1 Beclin1PI3K/AKT/mTOR pathwayAdaptor Proteins Signal TransducingTEM Transmission electron microscopyHsp70 Heat shock protein 70Organic ChemistryAutophagyAutophagosomesmTOR Mammalian target of rapamycinHsp70Oxidative Stress030104 developmental biologyProteostasislcsh:Biology (General)CV CanavanineBAG3 Bcl-2-associated athanogene 3MTT (3-(45-Dimethylthiazol-2-yl)-25-Diphenyltetrazolium Bromide)Apoptosis Regulatory ProteinsLysosomes030217 neurology & neurosurgeryOxidative stressRedox Biology
researchProduct

Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform

2017

Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therape…

0301 basic medicineGene isoformMaleProgrammed cell deathSmall interfering RNACell SurvivalBlotting WesternMice Nudecolorectal cancerApoptosisHIPK2BiologyProtein Serine-Threonine KinasesGene Expression Regulation Enzymologic03 medical and health sciencesExonRNA interferenceCell Line TumorAnimalsHumansViability assayoff-target effectCell Line TransformedSettore MED/04 - Patologia GeneraleKinaseReverse Transcriptase Polymerase Chain ReactionAlternative splicingalternative splicing isoformoff-target effectsExonsHCT116 CellsMolecular biologyXenograft Model Antitumor AssaysCell biologyGene Expression Regulation NeoplasticIsoenzymesAlternative Splicing030104 developmental biologyRNAi TherapeuticsOncologyalternative splicing isoformsNeoplastic Stem CellsRNA InterferenceHIPK2; alternative splicing isoforms; colorectal cancer; off-target effects; siRNA therapeutic applicationsiRNA therapeutic applicationCarrier ProteinsColorectal NeoplasmsGene DeletionResearch Paper
researchProduct

In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by alpha-Mannosyl-Functionalized Cationic Nanohydrogel Particles

2020

Macrophages are the front soldiers of the innate immune system and are vital for immune defense, tumor surveillance, and tissue homeostasis. In chronic diseases, including cancer and liver fibrosis, macrophages can be forced into an immunosuppressive and profibrotic M2 phenotype. M2-type macrophages overexpress the mannose receptor CD206. Targeting these cells via CD206 and macrophage repolarization towards an immune stimulating and antifibrotic M1 phenotype through RNA interference represents an appealing therapeutic approach. We designed nanohydrogel particles equipped with mannose residues on the surface (ManNP) that delivered siRNA more efficiently to M2 polarized macrophages compared t…

0301 basic medicineLiver CirrhosissiRNA deliveryTHP-1 Cellsmedicine.medical_treatmentmannose targetingMice0302 clinical medicineDrug Delivery SystemsFibrosisMacrophageM2 macrophagesRNA Small Interferinglcsh:QH301-705.5Tissue homeostasisMice Inbred BALB CChemistryHydrogelsGeneral MedicineHep G2 CellsLiver030220 oncology & carcinogenesisFemaleimmunotherapyMannose receptorMannose ReceptorReceptors Cell Surfacegene knock-downArticlenanohydrogels03 medical and health sciencesImmune systemIn vivomedicineImmune ToleranceAnimalsHumanscancerLectins C-TypeInnate immune systemMacrophagesfibrosisImmunotherapyMacrophage Activationmedicine.disease030104 developmental biologyMannose-Binding LectinsRAW 264.7 Cellslcsh:Biology (General)Cancer researchNanoparticlesMannose
researchProduct

Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

2017

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccine…

0301 basic medicineMessenger RNAGene knockdownToll-like receptormRNAImmunologyPattern recognition receptorRNATLR7BiologyMolecular biologyCell biology03 medical and health sciencessmall molecules030104 developmental biologysiRNAclick chemistryNucleic acidImmunology and Allergytoll-like receptorimmunostimulationbioconjugateSingle-Stranded RNAOriginal ResearchFrontiers in Immunology
researchProduct

An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation

2017

International audience; AbstractMyogenesis is a highly regulated multi-step process involving myoblast proliferation and differentiation. Although studies over the last decades have identified several factors governing these distinct major phases, many of them are not yet known. In order to identify novel genes, we took advantage of the C2C12 myoblastic line to establish a functional siRNA screen combined with quantitative-imaging analysis of a large amount of differentiated myoblasts. We knocked down 100 preselected mouse genes without a previously characterized role in muscle. Using image analysis, we tracked gene-silencing phenotypes by quantitative assessment of cellular density, myotub…

0301 basic medicineMyoblast proliferationMuscle Fibers SkeletalProliferation[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyMuscle DevelopmentCell LineMyoblastsNovel geneMice03 medical and health sciences0302 clinical medicineRNA interferenceAnimalsMyocyteGenetic TestingRNA Small InterferingGeneCell NucleusGeneticsMyogenesis[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMyogenesisCell DifferentiationCell BiologyPhenotypeCell biologyPhenotype030104 developmental biologyScreenDifferentiationsiRNARNA InterferenceC2C12C2C12030217 neurology & neurosurgery
researchProduct

Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology

2020

Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities. Given the potential of nanotechnology to deliver, enhance, and fine-tune cancer immunothera…

0301 basic medicinePD-L1medicine.medical_treatmentimmune checkpoint inhibitorNanotechnologyReviewmacrophage03 medical and health sciencesMice0302 clinical medicineImmune systemDrug Delivery SystemsCancer immunotherapyPD-L1NeoplasmsPD-1MedicineAnimalsHumansNanotechnologytumor microenvironmentTreatment resistanceAdverse effecttoll like receptor (TLR)lcsh:QH301-705.5Tumor microenvironmentbiologybusiness.industryCancerGeneral Medicinemedicine.diseaseCombined Modality TherapyImmune therapy030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesissiRNAbiology.proteinCAR T cell therapymyeloid derived suppressor cells (MDSC)Immunotherapybusinessbi-specific antibody therapyCells
researchProduct

Function and Evolution of Nematode RNAi Pathways

2019

Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue tha…

0301 basic medicineSmall RNASmall interfering RNAPiwilcsh:QH426-470nematodePiwi-interacting RNAReviewComputational biologypiRNABiochemistry03 medical and health sciences0302 clinical medicineRNA interference21U RNAGenetics22G RNAGene silencing26G RNAsmall RNAMolecular BiologyCaenorhabditis elegansRdRPbiologyRNAArgonautebiology.organism_classificationArgonautelcsh:Genetics030104 developmental biologysiRNAC. elegans030217 neurology & neurosurgeryNon-Coding RNA
researchProduct

From Genesis to Revelation: The Role of Inflammatory Mediators in Chronic Respiratory Diseases and their Control by Nucleic Acid-based Drugs.

2015

Asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis, are among the most common chronic diseases and their prevalence is increasing. Each of these diseases is characterized by the secretion of cytokines and pro-inflammatory molecules which are thought to play a critical role in their pathogenesis. Moreover, immune cells, particularly neutrophils, macrophages and dendritic cells as well structural cells such as epithelial and airway smooth muscle cells are also involved in the pathogenic cycle of these diseases. There is a pressing need for the development of new therapies for these pulmonary diseases, particularly as no existing treatment has bee…

0301 basic medicineSmall interfering RNARespiratory diseasessiRNA deliveryHMGB1 (high-mobility group box 1)medicine.medical_treatmentGenetic enhancementOligonucleotidesPharmaceutical Science02 engineering and technologyBiologySmall InterferingPathogenesis03 medical and health sciencesIdiopathic pulmonary fibrosisImmune systemRNA interferenceNucleic AcidsmedicineAnimalsHumansAntisenseHMGB1 ProteinRNA Small InterferingCatalyticLungNABDs deliveryDNADNA CatalyticGenetic TherapyOligonucleotides Antisense021001 nanoscience & nanotechnologymedicine.diseaseRespiration Disorders030104 developmental biologyCytokinemedicine.anatomical_structureImmunologyChronic DiseaseRNAInflammation Mediators0210 nano-technologyHMGB1 (high-mobility group box 1); Inflammation mediators; NABDs delivery; Respiratory diseases; siRNA delivery; Animals; Chronic Disease; DNA Catalytic; HMGB1 Protein; Humans; Inflammation Mediators; Nucleic Acids; Oligonucleotides Antisense; RNA Small Interfering; Respiration Disorders; Genetic TherapyCurrent drug delivery
researchProduct