Search results for "silo"

showing 10 items of 412 documents

Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases

2018

In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME) for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1), have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS) and polyetilenglicol (PEG)-based phases have been used, and the results have been compared with those obtained with a synthesized tetra…

Materials scienceCapillary actionin-tube solid-phase microextraction (IT-SPME); polar herbicides; capillary liquid chromatography; SiO<sub>2</sub> nanoparticlesFiltration and Separationengineering.material010402 general chemistry01 natural sciencesAnalytical Chemistrylcsh:Chemistrychemistry.chemical_compoundCoatingchemistry.chemical_classificationDetection limitAqueous solutionChromatographyPolydimethylsiloxane010401 analytical chemistryExtraction (chemistry)Polymercapillary liquid chromatographySiO2 nanoparticleslcsh:QC1-9990104 chemical sciencesTetraethyl orthosilicatechemistrylcsh:QD1-999engineeringpolar herbicideslcsh:Physicsin-tube solid-phase microextraction (IT-SPME)Separations
researchProduct

Porous structure of Purevision™ versus Focus® Night&amp;Day™ and conventional hydrogel contact lenses

2002

The surface and bulk structures of hydrogel contact lenses that contain siloxane moieties, Purevision™ (balafilcon A) and Focus®Night&Day™ (lotrafilcon A), were investigated. Standard hydrogel lenses of low (Seequence®), medium (Acuvue®), and high water content (Precision UV®) were used as controls. All the lenses were dehydrated in a series of ethanol solutions of increased concentration, critical-point dried in CO2, and sputter coated with gold/palladium before they were examined by scanning electron microscopy. Of all lenses examined, only the balafilcon lenses presented, in addition to the polymer network porosity characteristic of all hydrogels, a macroporous structure that was observe…

Materials scienceMacroporeScanning electron microscopeBiomedical Engineeringchemistry.chemical_elementBiomaterialschemistry.chemical_compoundchemistryPermeability (electromagnetism)SputteringSiloxanePolymer chemistrySelf-healing hydrogelsComposite materialPorosityPalladiumJournal of Biomedical Materials Research
researchProduct

Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy

2018

Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting b-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic–inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the …

Materials scienceNanocompositePolydimethylsiloxaneGeneral EngineeringHyperspectral imagingNanoparticleBioengineeringNanotechnologyGeneral ChemistryFluorescenceAtomic and Molecular Physics and OpticsPhoton upconversionchemistry.chemical_compoundchemistryNanosensorMicroscopyGeneral Materials Science
researchProduct

Colloidal nanoparticle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly

2017

Abstract A new, robust technique of size-selective nanoparticle ordering on porous anodized aluminum oxide (PAAO) templates is presented. Simultaneous particle sorting and array formation is achieved for the first time using a polydisperse suspension of irregularly shaped diamond nanocrystals. The array parameters can be tuned through a balance of evaporation driven particle flux, capillary, electrostatic, and adhesion forces, which are influenced by the asperities of the surface during the capillary and convective assembly dip-coating process. The resulting structures are dense (lower limit approximately 50 nm center separation), isolated (non-touching) nanoparticle arrays with a size dist…

Materials sciencePolydimethylsiloxaneAnodizingCapillary actionNanoparticleNanotechnology02 engineering and technologySurfaces and InterfacesGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesEvaporation (deposition)Dip-coating0104 chemical sciencesSurfaces Coatings and Filmschemistry.chemical_compoundchemistryMaterials Chemistry0210 nano-technologyPorosityNanodiamondSurface and Coatings Technology
researchProduct

Microstructuring of phospholipid bilayers on gold surfaces by micromolding in capillaries

2005

Microstructuring of lipid bilayers on gold surfaces was achieved by micromolding in capillaries employing chemically modified polydimethylsiloxane (PDMS). Microfluidic networks of PDMS were prepared by micromolding and functionalized with thiol end-groups using 3-mercaptopropyltrimethoxysilane. The PDMS stamps were firmly attached to the gold substrate via quasi-covalent linkage providing a tight seal, a prerequisite for establishing individual addressable capillaries. Bilayers composed of POPC/POPG were subsequently prepared on microstructured self assembly monolayers of 11-amino-1-undecanethiol via strong electrostatic interactions. This way it is possible to generate individually address…

Materials sciencePolydimethylsiloxaneLipid BilayersMicrofluidicsMicrofluidicsSiliconestechnology industry and agriculturePDMS stampNanotechnologyMicroscopy Atomic ForceSoft lithographySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialschemistry.chemical_compoundColloid and Surface ChemistrychemistryMonolayerDimethylpolysiloxanesGoldSelf-assemblyLipid bilayerPOPCPhospholipidsJournal of Colloid and Interface Science
researchProduct

Accelerated laboratory weathering of polypropylene composites filled with synthetic silicon-based compounds

2019

Abstract Non-functionalized and n-alkyl functionalized polyhedral oligomeric silsesquioxanes (POSS), siloxane-silsesquioxane resins and the sol-gel silicas were for the first time examined as possible UV-stabilizers and/or antioxidants in polypropylene (PP). The obtained composites were subjected to the accelerated laboratory weathering tests. The influence of the weathering conditions on the structure and properties of the PP materials was evaluated on the basis of the results from Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. It was found that weathering resistance of the PP materials was strongly de…

Materials sciencePolymers and PlasticsSiliconScanning electron microscopepolyhedral oligomeric silsesquioxanesiloxane-silsesquioxane resinchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundDifferential scanning calorimetrylawMaterials ChemistryCrystallizationFourier transform infrared spectroscopyPolypropylenechemistry.chemical_classificationPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical scienceschemistryChemical engineeringMechanics of Materialsaccelerated laboratory weatheringsilica0210 nano-technologyDispersion (chemistry)polypropylenePolymer Degradation and Stability
researchProduct

The Unique Versatility of the Double Metal Cyanide (DMC) Catalyst: Introducing Siloxane Segments to Polypropylene Oxide by Ring-Opening Copolymerizat…

2020

The combination of hydrophobic polydimethylsiloxane (PDMS) blocks with hydrophilic polyether segments plays a key role for silicone surfactants. Capitalizing on the double metal cyanide (DMC) catalyst, the direct (i.e., statistical) copolymerization of cyclic siloxanes and epoxides is shown to be feasible. The solvent-free one-pot copolymerization of hexamethylcyclotrisiloxane and propylene oxide results in the formation of gradient propylene oxide (PPO)-PDMS copolymers. Copolymers with up to 46% siloxane content with low dispersities (Ð < 1.2) are obtained in the molecular weight range of 2100-2900 g mol-1 . The polymerization kinetics are investigated by pressure monitoring and in situ 1 …

Materials sciencePolymers and PlasticsSiloxanesOxide02 engineering and technology010402 general chemistryPolypropylenes01 natural sciencesRing-opening polymerizationPolymerizationContact anglechemistry.chemical_compoundSiliconeMaterials ChemistryCopolymerPropylene oxideCyanidesPolydimethylsiloxaneOrganic ChemistryOxides021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringSiloxane0210 nano-technologyMacromolecular rapid communications
researchProduct

High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.

2012

The pulmonary surfactant film spanning the inner alveolar surface prevents alveolar collapse during the end-exhalation and reduces the work of breathing. Nanoparticles (NPs) present in the atmosphere or nanocarriers targeted through the pulmonary route for medical purposes challenge this biological barrier. During interaction with or passage of NPs through the alveolar surfactant, the biophysical functioning of the film may be altered. However, experimental evidence showing detailed biophysical interaction of NPs with the pulmonary surfactant film are scant. In this study, we have investigated the impact of a hydrophobic polyorganosiloxane (AmOrSil20) NPs on the integrity as well as on the …

Materials scienceSiloxanesPolymersSurface PropertiesGeneral Physics and AstronomyHigh resolutionNanoparticleNanotechnologyMicroscopy Atomic Forcelaw.inventionPulmonary surfactantlawMonolayerGeneral Materials ScienceStructural organizationtechnology industry and agricultureGeneral EngineeringPulmonary Surfactantsrespiratory systemKineticsPhase imagingBiophysicsNanoparticlesElectron microscopeNanocarriersHydrophobic and Hydrophilic InteractionsACS nano
researchProduct

Microscopic observations of superficial ultrastructure of unworn siloxane-hydrogel contact lenses by cryo-scanning electron microscopy

2006

The purpose of this study was to analyze three commercial siloxane-hydrogel contact lens materials, lotrafilcon A, balafilcon A, and galyfilcon A, by cryogenic scanning electron microscopy (cryoSEM). The fully hydrated lenses were frozen in slush liquid nitrogen and qualitatively observed in a cryogenic scanning electron microscope. The superficial ultrastructure of the siloxane-hydrogels was observed at the areas where the lens fractured during sample cryogenic preparation. There are qualitative differences among the three examined materials in the complex polymer network structure existing between the outer layer and the underlying polymer. CryoSEM, although destructive, is a useful tool …

Materials scienceSiloxanesScanning electron microscopeSurface PropertiesBiomedical Engineering02 engineering and technologyContact lens materialsHydrogel Polyethylene Glycol Dimethacrylatelaw.inventionBiomaterials03 medical and health sciences0302 clinical medicineOpticssilicone-hydrogellawMicroscopyMaterials TestingHumansCryo-scanning electron microscopyComposite materialchemistry.chemical_classificationScience & Technologybusiness.industryCryoelectron MicroscopyCryoSEM microscopyPolymerLiquid nitrogenpolymer surface021001 nanoscience & nanotechnologyContact Lenses HydrophilicSiloxane-hydrogel contact lensescryoSEMLens (optics)Contact lenschemistry030221 ophthalmology & optometryUltrastructuremicroscopysiloxane-hydrogels0210 nano-technologybusiness
researchProduct

Microscopic observation of unworn siloxane-hydrogel soft contact lenses by atomic force microscopy

2006

In the present study, samples of lotrafilcon A, balafilcon A, and galyfilcon A contact lenses were observed by atomic force microscopy (AFM) in tapping mode at areas ranging from 0.25 to 400 m2. Mean roughness (Ra), root-mean-square roughness (Rms) and maximum roughness (Rmax) in nanometers were obtained for the three lens materials at different magnifications. The three contact lenses showed significantly different surface topography. However, roughness values were dependent of the surface area to be analyzed. For a 1 m2 area, statistics revealed a significantly more irregular surface of balafilcon A (Ra = 6.44 nm; Rms = 8.30 nm; Rmax = 96.82 nm) compared with lotrafilcon A (Ra = 2.40 nm; …

Materials scienceSiloxanesSurface PropertiesBiomedical EngineeringNanotechnology02 engineering and technologyMicroscopy Atomic ForceHydrogel Polyethylene Glycol DimethacrylateBiomaterialsAtomic force microscopy03 medical and health scienceschemistry.chemical_compoundSurface roughness0302 clinical medicineMaterials TestingSurface roughnessHumansScience & TechnologyAtomic force microscopyContact Lenses Hydrophilic021001 nanoscience & nanotechnologySiloxane-hydrogel contact lenses3. Good healthMicroscopic observationchemistrySiloxaneWettability030221 ophthalmology & optometry0210 nano-technologyJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct