Search results for "sively"
showing 10 items of 40 documents
An autonomous petrological database for geodynamic simulations of magmatic systems
2022
SUMMARY Self-consistent modelling of magmatic systems is challenging as the melt continuously changes its chemical composition upon crystallization, which may affect the mechanical behaviour of the system. Melt extraction and subsequent crystallization create new rocks while depleting the source region. As the chemistry of the source rocks changes locally due to melt extraction, new calculations of the stable phase assemblages are required to track the rock evolution and the accompanied change in density. As a consequence, a large number of isochemical sections of stable phase assemblages are required to study the evolution of magmatic systems in detail. As the state-of-the-art melting diag…
Massively Parallel ANS Decoding on GPUs
2019
In recent years, graphics processors have enabled significant advances in the fields of big data and streamed deep learning. In order to keep control of rapidly growing amounts of data and to achieve sufficient throughput rates, compression features are a key part of many applications including popular deep learning pipelines. However, as most of the respective APIs rely on CPU-based preprocessing for decoding, data decompression frequently becomes a bottleneck in accelerated compute systems. This establishes the need for efficient GPU-based solutions for decompression. Asymmetric numeral systems (ANS) represent a modern approach to entropy coding, combining superior compression results wit…
WarpDrive: Massively Parallel Hashing on Multi-GPU Nodes
2018
Hash maps are among the most versatile data structures in computer science because of their compact data layout and expected constant time complexity for insertion and querying. However, associated memory access patterns during the probing phase are highly irregular resulting in strongly memory-bound implementations. Massively parallel accelerators such as CUDA-enabled GPUs may overcome this limitation by virtue of their fast video memory featuring almost one TB/s bandwidth in comparison to main memory modules of state-of-the-art CPUs with less than 100 GB/s. Unfortunately, the size of hash maps supported by existing single-GPU hashing implementations is restricted by the limited amount of …
Massively Parallel Huffman Decoding on GPUs
2018
Data compression is a fundamental building block in a wide range of applications. Besides its intended purpose to save valuable storage on hard disks, compression can be utilized to increase the effective bandwidth to attached storage as realized by state-of-the-art file systems. In the foreseeing future, on-the-fly compression and decompression will gain utmost importance for the processing of data-intensive applications such as streamed Deep Learning tasks or Next Generation Sequencing pipelines, which establishes the need for fast parallel implementations. Huffman coding is an integral part of a number of compression methods. However, efficient parallel implementation of Huffman decompre…
Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis?
2017
International audience; Background: Moxifloxacin retains partial activity against some fluoroquinolone-resistant mutants of Mycobacterium tuberculosis. Levofloxacin is presumed to be as active as moxifloxacin against drug-susceptible tuberculosis and to have a better safety profile.Objectives: To compare the in vivo activity of levofloxacin and moxifloxacin against M. tuberculosis strains with various levels of fluoroquinolone resistance.Methods: BALB/c mice were intravenously infected with 106M. tuberculosis H37Rv and three isogenic mutants: GyrA A90V, GyrB E540A and GyrB A543V. Treatment with 50 or 100 mg/kg levofloxacin and 60 or 66 mg/kg moxifloxacin was given orally every 6 h, for 4 we…
Trend in rifampicin-, multidrug- and extensively drug-resistant tuberculosis in Italy, 2009-2016
2018
In Italy, rifampicin-resistant and MDR-TB were high in foreign-born persons, but decreased from 2009 to 2016
mD3DOCKxb: An Ultra-Scalable CPU-MIC Coordinated Virtual Screening Framework
2017
Molecular docking is an important method in computational drug discovery. In large-scale virtual screening, millions of small drug-like molecules (chemical compounds) are compared against a designated target protein (receptor). Depending on the utilized docking algorithm for screening, this can take several weeks on conventional HPC systems. However, for certain applications including large-scale screening tasks for newly emerging infectious diseases such high runtimes can be highly prohibitive. In this paper, we investigate how the massively parallel neo-heterogeneous architecture of Tianhe-2 Supercomputer consisting of thousands of nodes comprising CPUs and MIC coprocessors that can effic…
SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search
2017
Computer architectures continue to develop rapidly towards massively parallel and heterogeneous systems. Thus, easily extensible yet highly efficient parallelization approaches for a variety of platforms are urgently needed. In this paper, we present SWhybrid, a hybrid computing framework for large-scale biological sequence database search on heterogeneous computing environments with multi-core or many-core processing units (PUs) based on the Smith- Waterman (SW) algorithm. To incorporate a diverse set of PUs such as combinations of CPUs, GPUs and Xeon Phis, we abstract them as SIMD vector execution units with different number of lanes. We propose a machine model, associated with a unified …
Optimizing Query Perturbations to Enhance Shape Retrieval
2020
3D Shape retrieval algorithms use shape descriptors to identify shapes in a database that are the most similar to a given key shape, called the query. Many shape descriptors are known but none is perfect. Therefore, the common approach in building 3D Shape retrieval tools is to combine several descriptors with some fusion rule. This article proposes an orthogonal approach. The query is improved with a Genetic Algorithm. The latter makes evolve a population of perturbed copies of the query, called clones. The best clone is the closest to its closest shapes in the database, for a given shape descriptor. Experimental results show that improving the query also improves the precision and complet…
Why Cortices ? Neural Computation in the Vertebrate Visual System
1989
We propose three high level structural principles of neural networks in the vertebrate visual cortex and discuss some of their computational implications for early vision: a) Lamination, average axonal and dendritic domains, and intrinsic feedback determine the spatio-temporal interactions in cortical processing. Possible applications of the resulting filters include continuous motion perception and the direct measurement of high-level parameters of image flow, b) Retinotopic mapping is an emergent property of massively parallel connections. With a local intrinsic operation in the target area, mapping combines to a space-variant image processing system as would be useful in the analysis of …