Search results for "skeletal muscle"
showing 10 items of 430 documents
Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy
2019
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease caused by an abnormal (GCN) triplet expansion within the polyadenylate-binding protein nuclear 1 gene and consequent mRNA pr...
Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model
2017
GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle h…
Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand bl…
2019
Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups …
Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α…
2016
AbstractHeat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activa…
Effects of resistance training on expression of IGF-I splice variants in younger and older men.
2016
Insulin-like growth factor-I (IGF-I) and its splice variants Insulin-like growth factor-I isoform Ea (IGF-IEa) and mechano growth factor (MGF) may play an important role in muscular adaptations to resistance training (RT) that may be modulated by ageing. It has been suggested that IGF-I induces cellular responses via AKT8 virus oncogene cellular homolog (Akt) and Extracellular signal-regulated kinase (Erk) signalling pathways. Therefore, resistance exercise-induced changes in skeletal muscle IGF-IEa and MGF messenger ribonucleic acid (mRNA), and MGF, Erk1/2, Akt and p70S6K protein expression were investigated before and after 21 weeks of RT in younger (YM, 20–34 yrs., n = 7) and older men (…
Sex-based differences after a single bout of exercise on PGC1α isoforms in skeletal muscle: A pilot study
2020
To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mito…
Redox-related biomarkers in physical exercise
2021
Research in redox biology of exercise has made considerable advances in the last 70 years. Since the seminal study of George Pake's group calculating the content of free radicals in skeletal muscle in resting conditions in 1954, many discoveries have been made in the field. The first section of this review is devoted to highlight the main research findings and fundamental changes in the exercise redox biology discipline. It includes: i) the first steps in free radical research, ii) the relation between exercise and oxidative damage, iii) the redox regulation of muscle fatigue, iv) the sources of free radicals during muscle contractions, and v) the role of reactive oxygen species as regulato…
Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents
2021
Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protoco…
Physiological and Molecular Adaptations to Strength Training
2018
High muscle contraction forces that lead to gains in muscle function, size, and strength characterize resistance exercise training. The purpose of this chapter is to outline the adaptations in myofiber size and metabolism that occur by stimuli of hormones and local growth factors, mechanical and metabolic stress of muscle tissue, and myofibrillar disruptions induced by a resistance exercise bout. The chapter will highlight the network of intracellular pathways (including mTOR signaling) that ultimately lead to increases in gene expression and protein synthesis. Accumulation of acute exercise responses by systematic training over time modulate the muscle proteome that can be observed as chan…
Arsenic promotes NF-Κb-mediated fibroblast dysfunction and matrix remodeling to impair muscle stem cell function
2016
Abstract Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration …