Search results for "skeletal muscle"

showing 10 items of 430 documents

Autophagic vacuolar myopathy is a common feature of CLN3 disease

2018

Abstract Objective The neuronal ceroid lipofuscinoses (NCL) are genetic degenerative disorders of brain and retina. NCL with juvenile onset (JNCL) is genetically heterogeneous but most frequently caused by mutations of CLN3. Classical juvenile CLN3 includes a rare protracted form, which has previously been linked to autophagic vacuolar myopathy (AVM). Our study investigates the association of AVM with classic, non‐protracted CLN3. Methods Evaluation of skeletal muscle biopsies from three, non‐related patients with classic, non‐protracted and one patient with protracted CLN3 disease by histology, immunohistochemistry, electron microscopy, and Sanger sequencing of the coding region of the CLN…

0301 basic medicinePathologymedicine.medical_specialtyDegenerative Disordermedicine.disease_cause03 medical and health sciencessymbols.namesake0302 clinical medicineMedicineResearch ArticlesSanger sequencingMutationbusiness.industryGenetic heterogeneityGeneral NeuroscienceSkeletal muscleHistology030104 developmental biologymedicine.anatomical_structureCLN3symbolsImmunohistochemistryNeurology (clinical)business030217 neurology & neurosurgeryResearch ArticleAnnals of Clinical and Translational Neurology
researchProduct

Hsp60 in Skeletal Muscle Fiber Biogenesis and Homeostasis: From Physical Exercise to Skeletal Muscle Pathology

2018

Hsp60 is a molecular chaperone classically described as a mitochondrial protein with multiple roles in health and disease, participating to the maintenance of protein homeostasis. It is well known that skeletal muscle is a complex tissue, rich in proteins, that is, subjected to continuous rearrangements, and this homeostasis is affected by many different types of stimuli and stresses. The regular exercise induces specific histological and biochemical adaptations in skeletal muscle fibers, such as hypertrophy and an increase of mitochondria activity and oxidative capacity. The current literature is lacking in information regarding Hsp60 involvement in skeletal muscle fiber biogenesis and reg…

0301 basic medicinePhysical exerciseInflammationReviewMitochondrionMuscle hypertrophy03 medical and health scienceshomeostasisMedicineskeletal musclelcsh:QH301-705.5diseaseexercisebusiness.industryRegeneration (biology)Skeletal musclehomeostasiGeneral MedicineHsp60Cell biology030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)ageingregenerationmedicine.symptombusinessBiogenesisHomeostasis
researchProduct

Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver

2019

Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sAC…

0301 basic medicinePhysiologyProtein metabolismlihaksetMyostatinlcsh:PhysiologyMuscle hypertrophyACTIVATIONchemistry.chemical_compound0302 clinical medicineENDOPLASMIC-RETICULUM STRESSCACHEXIAglutathioneta315Original ResearchIIB RECEPTORbiologylcsh:QP1-981Chemistry1184 Genetics developmental biology physiologyactivinActivin receptorMOUSE MODELunfolded protein response3. Good healthmedicine.anatomical_structure030220 oncology & carcinogenesismyostatinsyöpätauditautofagiacancer cachexiamedicine.medical_specialtyendocrine systemautophagyoxidative stress/redoxta3111liverCachexia03 medical and health sciencesPhysiology (medical)Internal medicinemedicineHEAT-SHOCK PROTEINSskeletal muscleglutationioksidatiivinen stressiECCENTRIC EXERCISEmaksaSkeletal muscleGlutathionemedicine.diseaseMUSCULAR-DYSTROPHY030104 developmental biologyEndocrinologybiology.proteinOXIDATIVE DAMAGE3111 BiomedicineproteiinitlihassurkastumasairaudetACVR2BFrontiers in Physiology
researchProduct

Frontiers in Physiology

2021

Besides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the Il15 promoter. However, whether there is a causal relationship between OGT ablation-induced IL-15 secretion and the lean phenotype remains unknown. To address this question, we generated muscle specific OGT and interleukin-15 receptor alpha subunit (IL-15rα) double knockout mice (mDKO…

0301 basic medicinePhysiologymyokinesinterleukin-15Nutrient sensingCarbohydrate metabolism03 medical and health sciences0302 clinical medicinetissue cross-talkPhysiology (medical)Myokinemedicineinsulin sensitivityQP1-981ReceptorG alpha subunitChemistrySkeletal muscleBrief Research ReportCell biology030104 developmental biologymedicine.anatomical_structureKnockout mouseO-GlcNAc signalingSignal transduction030217 neurology & neurosurgeryFrontiers in Physiology
researchProduct

A novel D2O tracer method to quantify RNA turnover as a biomarker of de novo ribosomal biogenesis, in vitro, in animal models, and in human skeletal …

2017

Current methods to quantify in vivo RNA dynamics are limited. Here, we developed a novel stable isotope (D2O) methodology to quantify RNA synthesis (i.e., ribosomal biogenesis) in cells, animal models, and humans. First, proliferating C2C12 cells were incubated in D2O-enriched media and myotubes ±50 ng/ml IGF-I. Second, rat quadriceps (untrained, n = 9; 7-wk interval-“like” training, n = 13) were collected after ~3-wk D2O (70 atom %) administration, with body-water enrichment monitored via blood sampling. Finally, 10 (23 ± 1 yr) men consumed 150-ml D2O followed by 50 ml/wk and undertook 6-wk resistance exercise (6 × 8 repetitions, 75% 1-repetition maximum 3/wk) with body-water enrichment mo…

0301 basic medicinePurineMaleSalivamedicine.medical_specialtyPhysiologymuscleEndocrinology Diabetes and MetabolismRiboseBiologyribosomal biogenesisCell LineQuadriceps Muscle03 medical and health scienceschemistry.chemical_compoundMiceYoung Adult0302 clinical medicineIn vivoTandem Mass SpectrometryPhysiology (medical)Internal medicinePhysical Conditioning AnimalmedicineAnimalsHumansNucleotideDeuterium OxideRNA synthesista315D2Ochemistry.chemical_classificationSkeletal muscleRNAResistance TrainingRibosomal RNARats030104 developmental biologymedicine.anatomical_structureEndocrinologychemistryInnovative MethodologyRNAFemaleRibosomes030217 neurology & neurosurgeryBiomarkersBlood samplingAmerican Journal of Physiology: Endocrinology and Metabolism
researchProduct

Interaction between ROR1 and MuSK activation complex in myogenic cells

2017

The ROR family of receptor tyrosine kinases, ROR1 and ROR2, is known to play an important role during skeletal muscle regeneration. ROR1 has a critical role in regulating satellite cell (SC) proliferation during muscle regeneration, and proinflammatory cytokines such as TNF-α and IL-1β can induce expression of ROR1 in myogenic cells via NF-κB activation. While searching for ROR1-interacting proteins in myogenic cells, we identified MuSK as a ROR1-binding protein. MuSK interacts with and phosphorylates ROR1 at the cytoplasmic proline-rich domain. ROR1 also interacts with the MuSK activator Dok-7 independently of MuSK interaction. Collectively, our results identified ROR1 as a new interacting…

0301 basic medicineSatellite Cells Skeletal MuscleBiophysicsMuscle ProteinsReceptor Tyrosine Kinase-like Orphan ReceptorsBiochemistryReceptor tyrosine kinaseCell LineProinflammatory cytokineMice03 medical and health sciencesProtein DomainsStructural BiologyChlorocebus aethiopsGeneticsAnimalsHumansReceptors CholinergicProtein phosphorylationPhosphorylationMolecular BiologyCell ProliferationBinding SitesbiologyKinaseChemistryActivator (genetics)Receptor Protein-Tyrosine KinasesCell DifferentiationROR2Cell BiologyCell biologyHEK293 Cells030104 developmental biologyCOS CellsROR1biology.proteinPhosphorylationProtein BindingFEBS Letters
researchProduct

Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers.

2016

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in …

0301 basic medicineUntranslated regionMalePathologyPhysiologylcsh:MedicineArtificial Gene Amplification and ExtensionDiseaseBioinformaticsBiochemistryPolymerase Chain Reaction0302 clinical medicineTrinucleotide RepeatsMedicine and Health SciencesMyotonic Dystrophylcsh:ScienceMusculoskeletal SystemMultidisciplinaryMusclesHematologyMiddle Aged3. Good healthBody FluidsNucleic acidsBlotting SouthernBloodGenetic DiseasesBiomarker (medicine)AnatomyResearch ArticleAdultmusculoskeletal diseasesmedicine.medical_specialtyBiologyResearch and Analysis MethodsMyotonic dystrophy03 medical and health sciencesExtraction techniquesmicroRNAmedicineGeneticsHumansNon-coding RNAMolecular Biology TechniquesGeneMolecular BiologyClinical GeneticsBiology and life sciencesGene Expression Profilinglcsh:Rmedicine.diseaseRNA extractionGene regulationGene expression profilingMicroRNAs030104 developmental biologySkeletal MusclesRNAlcsh:QGene expressionAge of onset030217 neurology & neurosurgeryBiomarkersPLoS ONE
researchProduct

Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells

2016

Summary The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5+, Pax3/Pax7+ cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC…

0301 basic medicineWOUNDSCellular differentiation[SDV]Life Sciences [q-bio]CellCell Culture TechniquesMuscle DevelopmentMOUSEBiochemistryMicelcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSlcsh:R5-920Gene Expression Regulation DevelopmentalPAX7 Transcription FactorCell Differentiation3. Good healthPanniculus carnosusCell biologyHaematopoiesisPhenotypemedicine.anatomical_structureMOUSE;TISSUE;REPAIR;WOUNDS;MYOGENESIS;EXPRESSION;SKIN;MODEL;SATELLITE CELLS;SKELETAL-MUSCLESKELETAL-MUSCLEMYF5Stem celllcsh:Medicine (General)EXPRESSIONSatellite Cells Skeletal MuscleBone Marrow CellsMice TransgenicBiologyArticleMYOGENESIS03 medical and health sciencesSATELLITE CELLSGeneticsmedicineAnimalsRegenerationCell LineageMuscle SkeletalPAX3 Transcription FactorCell ProliferationREPAIR[ SDV ] Life Sciences [q-bio]Cell growthCell BiologyMODEL030104 developmental biologylcsh:Biology (General)Cell cultureTISSUEImmunologyBiomarkersSKINDevelopmental BiologyStem Cell Reports
researchProduct

Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress

2016

Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …

0301 basic medicineX-Box Binding Protein 1Activin Receptors Type IIEukaryotic Initiation Factor-2MyostatinUPRBiochemistryMiceeIF-2 KinaseThioredoxinsSirtuin 1ENDOPLASMIC-RETICULUM STRESSDISULFIDE-ISOMERASEPhosphorylationta315Endoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsIN-VIVOta3141Activin receptorMOUSE MODELER STRESSEndoplasmic Reticulum Stress3. Good healthmedicine.anatomical_structuremyostatinPRESERVES MUSCLE FUNCTIONER-stressSKELETAL-MUSCLEmdxSignal TransductionEXPRESSIONmedicine.medical_specialtyXBP1MDX MICEBiologyProtein Serine-Threonine Kinases03 medical and health sciencesPhysiology (medical)Internal medicineHeat shock proteinPhysical Conditioning AnimalEndoribonucleasesmedicineAnimalsHumansRNA MessengerMuscle SkeletalSkeletal muscleMyostatinGENEActivating Transcription Factor 6Immunoglobulin Fc FragmentsMuscular Dystrophy DuchenneDisease Models Animal030104 developmental biologyProteostasisEndocrinologyGene Expression RegulationUnfolded protein responsebiology.proteinMice Inbred mdxProteostasisUnfolded Protein Response3111 BiomedicineCarrier ProteinsACVR2B
researchProduct

2020

Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocke…

0301 basic medicinebiologyChemistryMuscle cell differentiationMyogenesisSkeletal muscleActivin receptorMyostatinmusculoskeletal systemBiochemistryCell biology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structure030220 oncology & carcinogenesisbiology.proteinmedicineMyocyteMolecular BiologyC2C12FollistatinBiomolecules
researchProduct