Search results for "skeletal"

showing 10 items of 3025 documents

The Drosophila Hox gene Ultrabithorax acts both in muscles and motoneurons to orchestrate formation of specific neuromuscular connections

2016

Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling t…

0301 basic medicineCell typeEmbryo Nonmammaliananimal structuresNeuromuscular JunctionGenes InsectMuscle DevelopmentNeuromuscular junctionAnimals Genetically ModifiedHox genes03 medical and health sciencesWNT4MorphogenesismedicineAnimalsDrosophila ProteinsHox geneWnt Signaling PathwayMolecular BiologyTranscription factorUltrabithoraxHomeodomain ProteinsMotor NeuronsGeneticsbiologyMusclesmusculoskeletal neural and ocular physiologyfungiGenes HomeoboxGene Expression Regulation Developmentalbiology.organism_classificationMuscle innervationSegmental patterningCell biologyMotoneuronsDrosophila melanogaster030104 developmental biologymedicine.anatomical_structurenervous system209embryonic structuresDrosophilaWnt signalling pathwayDrosophila melanogasterDrosophila ProteinTranscription FactorsResearch ArticleDevelopmental BiologyDevelopment
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.

2016

We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.

0301 basic medicineDrugMaterials sciencemedia_common.quotation_subjectNanotechnologyCell Cycle Proteins02 engineering and technology03 medical and health sciencesBacterial ProteinsNanosensorEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonmedia_commonEscherichia coli ProteinsSurface Plasmon Resonance021001 nanoscience & nanotechnologyNanostructuresCytoskeletal Proteins030104 developmental biologyMembraneDrug developmentDrug deliveryFtsA0210 nano-technologyCarrier ProteinsProtein BindingACS applied materialsinterfaces
researchProduct

2020

Skeletal muscle injuries in competitive sports cause lengthy absences of athletes from tournaments. This is of tremendous competitive and economic relevance for both the athletes and their respective clubs. Therapy for structural muscle lesions aims to promote regeneration and fast-track return-to-play. A common clinical treatment strategy for muscle injuries is the intramuscular injection of calf blood compound and the homeopathic drug, Tr14. Although the combination of these two agents was reported to reduce recovery time, the regulatory mechanism whereby this occurs remains unknown. In this in vivo study, we selected a rat model of mechanical muscle injury to investigate the effect of th…

0301 basic medicineDrugmedicine.medical_specialtyCombination therapySports medicinemedia_common.quotation_subjectPharmacologyCatalysisInorganic Chemistry03 medical and health sciences0302 clinical medicineIn vivoGene expressionMedicinePhysical and Theoretical ChemistryMolecular BiologySpectroscopymedia_commonbusiness.industryRegeneration (biology)Organic ChemistrySkeletal muscle030229 sport sciencesGeneral MedicineComputer Science Applications030104 developmental biologymedicine.anatomical_structurebusinessIntramuscular injectionInternational Journal of Molecular Sciences
researchProduct

Non-essential role for cilia in coordinating precise alignment of lens fibres

2016

The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis t…

0301 basic medicineEmbryologyBBSomeBiologyArticle03 medical and health sciences0302 clinical medicineIntraflagellar transportMicrotubuleCiliogenesisLens CrystallineAnimalsBasal bodyLens placodeCiliaCells CulturedMice KnockoutTumor Suppressor ProteinsCiliumCell PolarityEpithelial CellsAnatomyCell biologyCytoskeletal Proteins030104 developmental biologyFiber cellMicrotubule-Associated Proteins030217 neurology & neurosurgeryDevelopmental BiologyMechanisms of Development
researchProduct

An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …

2017

In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…

0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription FactorsPLOS ONE
researchProduct

In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line

2017

IF 4.208; International audience; Phthalic acid esters have been widely used to improve the plasticity of PVC medical devices. They carry a high exposure risk for both humans and the environment in clinical situations. Our study focuses on the cytotoxicity of alternative plasticizers. Postulated primary metabolites were synthesized, not being commercially available. Cytotoxicity assays were performed on L929 murine cells according to the ISO-EN 10993-5 standard design for the biocompatibility of medical devices. The tested concentrations of plasticizers (0.01, 0.05 and 0.1 mg/ml) covered the range likely to be found in biological fluids coming into direct contact with the medical devices. D…

0301 basic medicineEnvironmental EngineeringMetabolite synthesisBiocompatibilityCell SurvivalCytotoxicityHealth Toxicology and MutagenesisMetabolitePhthalic AcidsIn Vitro TechniquesDEHP-alternative plasticizers010501 environmental sciences01 natural sciences[ SDE ] Environmental SciencesMice03 medical and health scienceschemistry.chemical_compoundPhthalatesPlasticizersIn vivoDiethylhexyl PhthalateAnimalsEnvironmental ChemistryOrganic chemistryPolyvinyl ChlorideCytotoxicityCells Cultured0105 earth and related environmental sciences[SDV.MHEP.RSOA] Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal systemChromatography[SDV.MHEP.GEG] Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontology[SDV.MHEP.GEG]Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontologyPublic Health Environmental and Occupational HealthPlasticizerPrimary metaboliteEstersGeneral MedicineGeneral ChemistryFibroblastsPollutionIn vitro3. Good healthPhthalic acid030104 developmental biology[SDV.MHEP.RSOA]Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal systemchemistryChemosphere
researchProduct

Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model.

2017

Purpose As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture healing. Methods A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic) groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2) as well as different numbers o…

0301 basic medicineExtracorporeal Shockwave TherapyCritical Care and Emergency Medicinemedicine.medical_treatmentOsteoporosisTest StatisticsDentistryGene Expressionlcsh:MedicineRats Sprague-Dawley0302 clinical medicineMathematical and Statistical TechniquesAnimal CellsMedicine and Health SciencesReproductive System ProceduresConnective Tissue Diseaseslcsh:ScienceMusculoskeletal SystemTrauma MedicineConnective Tissue CellsFracture Healing030222 orthopedicsMultidisciplinaryBiomechanicsBone FractureConnective TissueExtracorporeal shockwave therapyPhysical SciencesOvariectomized ratFemaleAnatomyCellular TypesTraumatic InjuryStatistics (Mathematics)Research ArticleOvariectomySurgical and Invasive Medical ProceduresBone healingResearch and Analysis Methods03 medical and health sciencesRheumatologymedicineGeneticsAnimalsTibiaStatistical MethodsSkeletonAnalysis of VarianceOsteoblastsSurgical ExcisionTibiabusiness.industrylcsh:RBiology and Life SciencesBone fractureCell Biologymedicine.diseaseRatsDisease Models Animal030104 developmental biologyBiological TissueAdjunctive treatmentOsteoporosislcsh:QbusinessOsteoporotic FracturesMathematicsPLoS ONE
researchProduct

Are the Myokines the Mediators of Physical Activity-Induced Health Benefits?

2016

BACKGROUND: The concept of the muscle as a secretory organ, developed during the last decades, partially answers to the issue of how the crosstalk between skeletal muscle and distant tissues happens. The beneficial effects of exercise transcend the simple improved skeletal muscle functionality: systemic responses to exercise have been observed in distal organs like heart, kidney, brain and liver. Increasing data have accumulated regarding the synthesis, the kinetics of release and the biological roles of muscular cytokines, now called myokines. The most recent techniques have meaningfully improved the identification of the muscle cell secretome, but several issues regarding the extent of se…

0301 basic medicineFGF21Physical activityMuscle ProteinsMyostatinHealth benefitsBioinformatics03 medical and health sciencesMyokineDrug DiscoveryMyokinemedicineMyocyteHumansMuscle SkeletalExercisePharmacologybiologySkeletal muscle030104 developmental biologymedicine.anatomical_structureImmunologybiology.proteinCytokinesmedicine.symptomMuscle contraction
researchProduct