Search results for "ski"

showing 10 items of 9488 documents

Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies

2020

The first-principles (ab initio) computations of the structural, electronic, and phonon properties have been performed for cubic and low-temperature tetragonal phases of BaTiO3 and SrTiO3 perovskite crystals, both stoichiometric and non-stoichiometric (with neutral oxygen vacancies). Calculations were performed with the CRYSTAL17 computer code within the linear combination of atomic orbitals approximation, using the B1WC advanced hybrid exchange-correlation functional of the density-functional-theory (DFT) and the periodic supercell approach. Various possible spin states of the defective systems were considered by means of unrestricted (open shell) DFT calculations. It was demonstrated that…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Spin statesAb initioGeneral Physics and Astronomy01 natural sciencesMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsLinear combination of atomic orbitalsVacancy defect0103 physical sciencesPhysics::Atomic and Molecular Clusterssymbols010306 general physicsRaman spectroscopyOpen shellPerovskite (structure)Low Temperature Physics
researchProduct

Continuous hydrothermal synthesis in supercritical conditions as a novel process for the elaboration of Y-doped BaZrO3

2021

Abstract The present work describes a novel process for the elaboration of a ceramic material. Y-doped barium zirconate, an electrolyte material for Protonic Ceramic Fuel cell, was synthesized by a continuous hydrothermal process in supercritical conditions (410 °C/30.0 MPa) using nitrate precursors and NaOH reactants. The use of supercritical water allowed the formation of particles of about 50 nm in diameter with a narrow size distribution. X-Ray Diffraction examination revealed that a major perovskite phase with few BaCO3 and YO(OH) impurities was obtained. BaCO3 is assumed to form due to faster kinetics than Y-doped BaZrO3 resulting in a Ba-deficient perovskite phase. The Ba-deficiency …

010302 applied physicsMaterials scienceProcess Chemistry and Technologychemistry.chemical_element02 engineering and technologyYttrium021001 nanoscience & nanotechnology01 natural sciencesHydrothermal circulationSupercritical fluidSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringProtonic ceramic fuel cellPhase (matter)visual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumHydrothermal synthesisCeramic0210 nano-technologyPerovskite (structure)Ceramics International
researchProduct

Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

2021

The authors would like to thank P. Yudin for valuable discussions, N. Nepomniashchaia for VASE studies, and S. Cichon for XPS analysis. The authors acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme ‘‘Research, Development and Education’’ (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760), and ERA NET project Sun2Chem (E. K. and L. R.). Calculations have been done on the LASC Cluster in the ISSP UL.

010302 applied physicsMaterials scienceRelaxation (NMR)Oxidechemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesOxygenMetalCrystalchemistry.chemical_compoundchemistryChemical physicsvisual_art0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Chemistryvisual_art.visual_art_mediumThin film0210 nano-technologyPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Validation of a 3D mathematical model for feed rod melting during floating zone Si crystal growth

2019

Abstract A mathematical model of global 3D heat transfer in floating zone silicon single crystal growth process is used to predict the shape of the open melting front of the feed rod. The model is validated using measurement data from research-scale growth experiments. Shape profiles of the open melting front are obtained from the feed rod leftover using a movable dial gauge. Azimuthal asymmetry of the rim of the open melting front is revealed in both simulations and measurements, quantitatively indicating the influence of the main slit of the inductor.

010302 applied physicsMaterials scienceSilicondigestive oral and skin physiologyProcess (computing)chemistry.chemical_elementCrystal growth02 engineering and technologyMechanicsGauge (firearms)021001 nanoscience & nanotechnologyCondensed Matter PhysicsInductor01 natural sciencesInorganic ChemistryDialAzimuthal asymmetrychemistry0103 physical sciencesHeat transferMaterials Chemistrysense organs0210 nano-technologyJournal of Crystal Growth
researchProduct

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs

2018

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceta114010308 nuclear & particles physicselectronsElectron linacElectronhiukkaskiihdyttimetelektronitparticle accelerators01 natural sciencesLinear particle acceleratorNuclear physicsNuclear interactionradiation physicsCross section (physics)säteilyfysiikkaNuclear Energy and Engineering0103 physical sciencesElectrical and Electronic EngineeringEvent (particle physics)IEEE Transactions on Nuclear Science
researchProduct

Measurements of the energy distribution of electrons lost from the minimum B-field -- the effect of instabilities and two-frequency heating

2020

Further progress in the development of ECR ion sources (ECRIS) requires deeper understanding of the underlying physics. One of the topics that remains obscure, though being crucial for the performance of the ECRIS, is the electron energy distribution (EED). A well-developed technique of measuring the EED of electrons escaping axially from the magnetically confined plasma of an ECRIS was used for the study of EED in unstable mode of plasma confinement, i.e. in the presence of kinetic instabilities. The experimental data were recorded for pulsed and CW discharges with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The measurements were focused on observing differences bet…

010302 applied physicsPhysicsResonanceFOS: Physical sciencesPlasmaElectronhiukkaskiihdyttimetplasmafysiikka7. Clean energy01 natural sciencesPhysics - Plasma PhysicsElectron cyclotron resonanceIon source010305 fluids & plasmasMagnetic fieldIonPlasma Physics (physics.plasm-ph)Magnetic trap0103 physical sciencesAtomic physicsInstrumentation
researchProduct

Lead evaporation instabilities and failure mechanisms of the micro oven at the GTS-LHC ECR ion source at CERN

2020

The GTS-LHC ECR ion source (named after the Grenoble Test Source and the Large Hadron Collider) at CERN provides heavy ion beams for the chain of accelerators from Linac3 up to the LHC for high energy collision experiments and to the Super Proton Synchrotron for fixed target experiments. During the standard operation, the oven technique is used to evaporate lead into the source plasma to produce multiple charged lead ion beams. Intensity and stability are key parameters for the beam, and the operational experience is that some of the source instabilities can be linked to the oven performance. Over long operation periods of several weeks, the evaporation is not stable which makes the tuning …

010302 applied physicsRange (particle radiation)Large Hadron ColliderMaterials scienceionitNuclear engineeringEvaporationPlasmahiukkaskiihdyttimetplasmafysiikka01 natural sciencesSuper Proton SynchrotronIon source010305 fluids & plasmasIonComputer Science::OtherPhysics::Popular Physics0103 physical scienceslyijyInstrumentationBeam (structure)
researchProduct

The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source

2021

Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…

010302 applied physics[PHYS]Physics [physics]High energyMaterials scienceScatteringAstrophysics::High Energy Astrophysical Phenomena[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]scatteringElectronhiukkaskiihdyttimetCondensed Matter Physicselektronit01 natural sciences7. Clean energyIon source010305 fluids & plasmasNuclear Energy and Engineering0103 physical sciencessirontaRadio frequencyAtomic physics
researchProduct

The biased disc of an electron cyclotron resonance ion source as a probe of instability-induced electron and ion losses

2019

International audience; Electron Cyclotron Resonance Ion Source (ECRIS) plasmas are prone to kinetic instabilities resulting in loss of electron and ion confinement. It is demonstrated that the biased disk of an ECRIS can be used as a probe to quantify such instability-induced electron and ion losses occurring in less than 10 µs. The qualitative interpretation of the data is supported by the measurement of the energy spread of the extracted ion beams implying a transient plasma potential >1.5 kV during the instability. A parametric study of the electron losses combined with electron tracking simulations allows for estimating the fraction of electrons expelled in each instability event to be…

010302 applied physics[PHYS]Physics [physics]Materials sciencesyklotronit[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]ElectronPlasmahiukkaskiihdyttimetKinetic energyplasmafysiikka01 natural sciencesInstabilityElectron cyclotron resonanceIon source010305 fluids & plasmasIonPhysics::Plasma Physics0103 physical sciencesTransient (oscillation)Atomic physicsInstrumentation
researchProduct

Lower mantle hydrogen partitioning between periclase and perovskite : a quantum chemical modelling

2016

Abstract Partitioning of hydrogen (often referred to as H2O) between periclase (pe) and perovskite (pvk) at lower mantle conditions (24–80 GPa) was investigated using quantum mechanics, equilibrium reaction thermodynamics and by monitoring two H-incorporation models. One of these (MSWV) was based on replacements provided by Mg2+ ↔ 2H+ and Si4+ ↔ 4H+; while the other (MSWA) relied upon substitutions in 2Mg2+ ↔ Al3+ + H+ and Si4+ ↔ Al3+ + H+. H2O partitioning in these phases was considered in the light of homogeneous (Bulk Silicate Earth; pvk: 75%–pe:16% model contents) and heterogeneous (Layered Mantle; pvk:78%–pe:14% modal contents) mantle geochemical models, which were configured for lower…

010504 meteorology & atmospheric sciencesHydrogenpericlaseAnalytical chemistrySocio-culturalechemistry.chemical_elementengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)chemistry.chemical_compoundGeochemistry and PetrologyOrganic chemistryH2O-partitioningperovskiteEquilibrium constant0105 earth and related environmental sciencesChemistryAb-initio calculationslowermantle; H2O-partitioning; periclase; perovskite.SilicatePartition coefficientlower mantleAnhydrousengineeringPericlaseChemical equilibriumlower mantle H2O-partitioning Ab-initio calculations periclase perovskite
researchProduct