Search results for "skyrmions"

showing 8 items of 8 documents

The 2020 skyrmionics roadmap

2020

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an inte…

DYNAMICSELECTRODYNAMICSAcoustics and UltrasonicsMagnetoresistanceNuclear TheoryMOTIONMagnetismFOS: Physical sciences02 engineering and technology01 natural sciencesNuclear Theory (nucl-th)Condensed Matter - Strongly Correlated ElectronsHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin transferMAGNETORESISTANCEddc:530010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]spintronicsSpintronics[PHYS.PHYS]Physics [physics]/Physics [physics]Strongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsELECTRICAL DETECTIONSkyrmionPhysicsPhysik (inkl. Astronomie)DRIVEN021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsExperimental researchSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsddc:LATTICEHigh Energy Physics - PhenomenologyskyrmionROOM-TEMPERATUREmagnetismTEMPERATURE MAGNETIC SKYRMIONS0210 nano-technologyAND gateGENERATION
researchProduct

Synthetic electromagnetic knot in a three-dimensional skyrmion

2018

We experimentally simulate a quantum-mechanical particle interacting with knotted electromagnetic fields.

Electromagnetic fieldField (physics)skyrmionsQuantum Hall effect01 natural sciences010305 fluids & plasmasElectromagnetism0103 physical sciencesQuantum systemClassical electromagnetismknotted electromagnetic field structureskvanttifysiikka010306 general physicsQuantumResearch ArticlesSpin-½PhysicsMultidisciplinaryta114Physicssähkömagneettiset kentätBose-Einstein condensatesSciAdv r-articlesCondensed Matter PhysicsMathematics::Geometric TopologyClassical mechanicsResearch ArticleScience Advances
researchProduct

Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.

2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…

Materials scienceMagnetic domainskyrmionsmultilayersperpendicular magnetic anisotropyDzyaloshinkii-Moriya interaction02 engineering and technologymagnetic domains01 natural sciencesEngineering0103 physical sciencesddc:530General Materials ScienceNanoscience & Nanotechnology010306 general physicsSpin-½Magnetization dynamicsCondensed matter physicsTexture (cosmology)Mechanical EngineeringSkyrmion021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldFerromagnetismMechanics of MaterialsPhysical SciencesChemical Sciences0210 nano-technologyJoule heating
researchProduct

Direct Imaging of Chiral Domain Walls and Néel‐Type Skyrmionium in Ferrimagnetic Alloys

2021

International audience; The evolution of chiral spin structures is studied in ferrimagnet Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-hand Néel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii-Moriya interaction (DMI) that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly mostly const…

Materials scienceSpintronicsCondensed matter physics530 PhysicsSkyrmionDirect imaging02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciences[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Electronic Optical and Magnetic MaterialsDomain (software engineering)BiomaterialsFerrimagnetism0103 physical sciencesElectrochemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chirals ; Neel domain walls ; skyrmioniums ; skyrmions spintronics010306 general physics0210 nano-technologyAdvanced Functional Materials
researchProduct

Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase ofMn1−xFexGe

2015

We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase…

PhysicsCondensed matter physicsSkyrmionSPIN-DENSITY WAVEGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesCRYSTALSLATTICEGeometric phaseAb initio quantum chemistry methodsLattice (order)MAGNETIC SKYRMIONSMNSI0103 physical sciencesSpin density waveDensity functional theoryMETALSBerry connection and curvature010306 general physics0210 nano-technologyAdiabatic processAPPROXIMATIONPhysical Review Letters
researchProduct

B–T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo

2017

We use an atomistic spin model derived from density functional theory calculations for the ultra-thin film Pd/Fe/Ir(111) to show that temperature induces coexisting non-zero skyrmion and antiskyrmion densities. We apply the parallel tempering Monte Carlo method in order to reliably compute thermodynamical quantities and the B-T phase diagram in the presence of frustrated exchange interactions. We evaluate the critical temperatures using the topological susceptibility. We show that the critical temperatures depend on the magnetic field in contrast to previous work. In total, we identify five phases: spin spiral, skyrmion lattice, ferromagnetic phase, intermediate region with finite topologic…

frustration of magnetic exchangemagnetic skyrmionsMonte Carlo methodthermodynamic studyFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology53001 natural sciences7. Clean energyMonte Carlo simulationsPhase (matter)0103 physical sciencesSpin model010306 general physicsTopological quantum numberPhase diagramPhysicsCondensed Matter - Materials ScienceCondensed matter physicsSkyrmionMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter::Strongly Correlated ElectronsDensity functional theoryParallel tempering0210 nano-technologyNew Journal of Physics
researchProduct

Chirality selective spin interactions mediated by the moving superconducting condensate

2018

We show that superconducting correlations in the presence of nonzero condensate velocity can mediate the peculiar interaction between localized spins that breaks the global inversion symmetry of magnetic moments. The proposed interaction mechanism is capable of removing fundamental degeneracies between topologically distinct magnetic textures. For the generic system of three magnetic impurities in the current-carrying superconductor, we find the energy term proportional to spin chirality. In realistic superconductor/ferromagnetic/superconductor setups we reveal significant energy differences between various magnetic textures with opposite chiralities. We calculate Josephson energies of junc…

suprajohtavuushelicoidal magnetic textureskyrmionsCondensed Matter::Superconductivityimpurities in superconductorsmagnetic textureexchange interactionJosephson effectmagnetismiRKKY interactionspin texturemagnetic vorticessuprajohteet
researchProduct

Chirality selective spin interactions mediated by the moving superconducting condensate

2018

We show that superconducting correlations in the presence of nonzero condensate velocity can mediate the peculiar interaction between localized spins that breaks the global inversion symmetry of magnetic moments. The proposed interaction mechanism is capable of removing fundamental degeneracies between topologically distinct magnetic textures. For the generic system of three magnetic impurities in the current-carrying superconductor, we find the energy term proportional to spin chirality. In realistic superconductor/ferromagnetic/superconductor setups we reveal significant energy differences between various magnetic textures with opposite chiralities. We calculate Josephson energies of junc…

suprajohtavuusskyrmionsmagnetic textureexchange interaction02 engineering and technology01 natural sciencessuprajohteetCondensed Matter::Superconductivityimpurities in superconductors0103 physical sciencesmagnetismi010306 general physicsSpin (physics)RKKY interactionPhysicsSuperconductivityMagnetic momentSpintronicsCondensed matter physicsSpinsta114SkyrmionJosephson effect021001 nanoscience & nanotechnologyChirality (electromagnetism)Ferromagnetismhelicoidal magnetic texture0210 nano-technologymagnetic vorticesPhysical Review B
researchProduct