Search results for "software engineering"
showing 10 items of 1151 documents
Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network
2020
In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use atten…
Deep Non-Line-of-Sight Reconstruction
2020
The recent years have seen a surge of interest in methods for imaging beyond the direct line of sight. The most prominent techniques rely on time-resolved optical impulse responses, obtained by illuminating a diffuse wall with an ultrashort light pulse and observing multi-bounce indirect reflections with an ultrafast time-resolved imager. Reconstruction of geometry from such data, however, is a complex non-linear inverse problem that comes with substantial computational demands. In this paper, we employ convolutional feed-forward networks for solving the reconstruction problem efficiently while maintaining good reconstruction quality. Specifically, we devise a tailored autoencoder architect…
Saying Hello World with MOLA - A Solution to the TTC 2011 Instructive Case
2011
This paper describes the solution of Hello World transformations in MOLA transformation language. Transformations implementing the task are relatively straightforward and easily inferable from the task specification. The required additional steps related to model import and export are also described.
Investigating Low Level Protocols for Wireless Body Sensor Networks
2016
The rapid development of medical sensors has increased the interest in Wireless Body Area Network (WBAN) applications where physiological data from the human body and its environment is gathered, monitored, and analyzed to take the proper measures. In WBANs, it is essential to design MAC protocols that ensure adequate Quality of Service (QoS) such as low delay and high scalability. This paper investigates Medium Access Control (MAC) protocols used in WBAN, and compares their performance in a high traffic environment. Such scenario can be induced in case of emergency for example, where physiological data collected from all sensors on human body should be sent simultaneously to take appropria…
Efficient and accurate monitoring of the depth information in a Wireless Multimedia Sensor Network based surveillance
2017
International audience; Abstract—Wireless Multimedia Sensor Network (WMSN) is a promising technology capturing rich multimedia data like audio and video, which can be useful to monitor an environment under surveillance. However, many scenarios in real time monitoring requires 3D depth information. In this research work, we propose to use the disparity map that is computed from two or multiple images, in order to monitor the depth information in an object or event under surveillance using WMSN. Our system is based on distributed wireless sensors allowing us to notably reduce the computational time needed for 3D depth reconstruction, thus permitting the success of real time solutions. Each pa…
SHARP 2020: The 1st Shape Recovery from Partial Textured 3D Scans Challenge Results
2020
The SHApe Recovery from Partial textured 3D scans challenge, SHARP 2020, is the first edition of a challenge fostering and benchmarking methods for recovering complete textured 3D scans from raw incomplete data. SHARP 2020 is organised as a workshop in conjunction with ECCV 2020. There are two complementary challenges, the first one on 3D human scans, and the second one on generic objects. Challenge 1 is further split into two tracks, focusing, first, on large body and clothing regions, and, second, on fine body details. A novel evaluation metric is proposed to quantify jointly the shape reconstruction, the texture reconstruction and the amount of completed data. Additionally, two unique da…
The Essence Theory of Software Engineering – Large-Scale Classroom Experiences from 450+ Software Engineering BSc Students
2018
Software Engineering as an industry is highly diverse in terms of development methods and practices. Practitioners employ a myriad of methods and tend to further tailor them by e.g. omitting some practices or rules. This diversity in development methods poses a challenge for software engineering education, creating a gap between education and industry. General theories such as the Essence Theory of Software Engineering can help bridge this gap by presenting software engineering students with higher-level frameworks upon which to build an understanding of software engineering methods and practical project work. In this paper, we study Essence in an educational setting to evaluate its usefuln…
Amidst Uncertainty–or Not? : Decision-Making in Early-Stage Software Startups
2019
It is commonly claimed that the initial stages of any startup business are dominated by continuous, extended uncertainty, in an environment that has even been described as chaotic. Consequently, decisions are made in uncertain circumstances, so making the right decision is crucial to successful business. However, little currently exists in the way of empirical studies into this supposed uncertainty. In this paper, we study decision-making in early-stage software startups by means of a single, in-depth case study. Based on our data, we argue that software startups do not work in a chaotic environment, nor are they characterized by unique uncertainty unlike that experienced by other firms. pe…
A comprehensive study of automatic program repair on the QuixBugs benchmark
2021
Abstract Automatic program repair papers tend to repeatedly use the same benchmarks. This poses a threat to the external validity of the findings of the program repair research community. In this paper, we perform an empirical study of automatic repair on a benchmark of bugs called QuixBugs, which has been little studied. In this paper, (1) We report on the characteristics of QuixBugs; (2) We study the effectiveness of 10 program repair tools on it; (3) We apply three patch correctness assessment techniques to comprehensively study the presence of overfitting patches in QuixBugs. Our key results are: (1) 16/40 buggy programs in QuixBugs can be repaired with at least a test suite adequate pa…
The entrepreneurial logic of startup software development : A study of 40 software startups
2021
Context: Software startups are an essential source of innovation and software-intensive products. The need to understand product development in startups and to provide relevant support are highlighted in software research. While state-of-the-art literature reveals how startups develop their software, the reasons why they adopt these activities are underexplored. Objective: This study investigates the tactics behind software engineering (SE) activities by analyzing key engineering events during startup journeys. We explore how entrepreneurial mindsets may be associated with SE knowledge areas and with each startup case. Method: Our theoretical foundation is based on causation and effectuatio…