6533b861fe1ef96bd12c4606
RESEARCH PRODUCT
Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network
Jivitesh SharmaMorten GoodwinOle-christoffer Granmosubject
FOS: Computer and information sciencesComputer Science - Machine LearningSound (cs.SD)Computer science020209 energyMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreConvolutional neural networkComputer Science - SoundDomain (software engineering)Machine Learning (cs.LG)Statistics - Machine LearningAudio and Speech Processing (eess.AS)0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringAudio signal processingVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550business.industrySIGNAL (programming language)Pattern recognitionFeature (computer vision)Benchmark (computing)020201 artificial intelligence & image processingArtificial intelligenceMel-frequency cepstrumbusinesscomputerElectrical Engineering and Systems Science - Audio and Speech ProcessingCommunication channeldescription
In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use attention modules that perform channel and spatial attention together. We use some data augmentation techniques to further boost performance. Our model is able to achieve state-of-the-art performance on all three benchmark environment sound classification datasets, i.e. the UrbanSound8K (97.52%), ESC-10 (95.75%) and ESC-50 (88.50%). To the best of our knowledge, this is the first time that a single environment sound classification model is able to achieve state-of-the-art results on all three datasets. For ESC-10 and ESC-50 datasets, the accuracy achieved by the proposed model is beyond human accuracy of 95.7% and 81.3% respectively.
year | journal | country | edition | language |
---|---|---|---|---|
2020-10-25 |