0000000000255992
AUTHOR
Jivitesh Sharma
Deep CNN-ELM Hybrid Models for Fire Detection in Images
In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…
Advances in Deep Learning Towards Fire Emergency Application : Novel Architectures, Techniques and Applications of Neural Networks
Paper IV is not published yet. With respect to copyright paper IV and paper VI was excluded from the dissertation. Deep Learning has been successfully used in various applications, and recently, there has been an increasing interest in applying deep learning in emergency management. However, there are still many significant challenges that limit the use of deep learning in the latter application domain. In this thesis, we address some of these challenges and propose novel deep learning methods and architectures. The challenges we address fall in these three areas of emergency management: Detection of the emergency (fire), Analysis of the situation without human intervention and finally Evac…
Emergency Analysis: Multitask Learning with Deep Convolutional Neural Networks for Fire Emergency Scene Parsing
In this paper, we introduce a novel application of using scene semantic image segmentation for fire emergency situation analysis. To analyse a fire emergency scene, we propose to use deep convolutional image segmentation networks to identify and classify objects in a scene based on their build material and their vulnerability to catch fire. We introduce our own fire emergency scene segmentation dataset for this purpose. It consists of real world images with objects annotated on the basis of their build material. We use state-of-the-art segmentation models: DeepLabv3, DeepLabv3+, PSPNet, FCN, SegNet and UNet to compare and evaluate their performance on the fire emergency scene parsing task. …
Hydropower Optimization Using Split-Window, Meta-Heuristic and Genetic Algorithms
In this paper, we try to find the most efficient optimization algorithm that can be used to resolve the hydropower optimization problem. We propose a novel optimization technique is called the Split-window method. The method is relatively simple and reduces the complexity of the optimization problem by split-ting the planning horizon (and datasets) into equal windows and assigning the same values to policies(actions) within each part. After splitting, a meta-heuristic technique is used to optimize the actions, and the dataset is split again until a split contains only one instance (timestep). The unique values to be optimized during each iteration is equal to the number of splits which make…
Verifying Properties of Tsetlin Machines
Tsetlin Machines (TsMs) are a promising and interpretable machine learning method which can be applied for various classification tasks. We present an exact encoding of TsMs into propositional logic and formally verify properties of TsMs using a SAT solver. In particular, we introduce in this work a notion of similarity of machine learning models and apply our notion to check for similarity of TsMs. We also consider notions of robustness and equivalence from the literature and adapt them for TsMs. Then, we show the correctness of our encoding and provide results for the properties: adversarial robustness, equivalence, and similarity of TsMs. In our experiments, we employ the MNIST and IMDB …
Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment
We focus on the important problem of emergency evacuation, which clearly could benefit from reinforcement learning that has been largely unaddressed. Emergency evacuation is a complex task which is difficult to solve with reinforcement learning, since an emergency situation is highly dynamic, with a lot of changing variables and complex constraints that makes it difficult to train on. In this paper, we propose the first fire evacuation environment to train reinforcement learning agents for evacuation planning. The environment is modelled as a graph capturing the building structure. It consists of realistic features like fire spread, uncertainty and bottlenecks. We have implemented the envir…
Hydropower Optimization Using Deep Learning
This paper demonstrates how deep learning can be used to find optimal reservoir operating policies in hydropower river systems. The method that we propose is based on the implicit stochastic optimization (ISO) framework, using direct policy search methods combined with deep neural networks (DNN). The findings from a real-world two-reservoir hydropower system in southern Norway suggest that DNNs can learn how to map input (price, inflow, starting reservoir levels) to the optimal production pattern directly. Due to the speed of evaluating the DNN, this approach is from an operational standpoint computationally inexpensive and may potentially address the long-standing problem of high dimension…
Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation
Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…
Emergency Detection with Environment Sound Using Deep Convolutional Neural Networks
In this paper, we propose a generic emergency detection system using only the sound produced in the environment. For this task, we employ multiple audio feature extraction techniques like the mel-frequency cepstral coefficients, gammatone frequency cepstral coefficients, constant Q-transform and chromagram. After feature extraction, a deep convolutional neural network (CNN) is used to classify an audio signal as a potential emergency situation or not. The entire model is based on our previous work that sets the new state of the art in the environment sound classification (ESC) task (Our paper is under review in the IEEE/ACM Transactions on Audio, Speech and Language Processing and also avai…
Environment Sound Classification using Multiple Feature Channels and Attention based Deep Convolutional Neural Network
In this paper, we propose a model for the Environment Sound Classification Task (ESC) that consists of multiple feature channels given as input to a Deep Convolutional Neural Network (CNN) with Attention mechanism. The novelty of the paper lies in using multiple feature channels consisting of Mel-Frequency Cepstral Coefficients (MFCC), Gammatone Frequency Cepstral Coefficients (GFCC), the Constant Q-transform (CQT) and Chromagram. Such multiple features have never been used before for signal or audio processing. And, we employ a deeper CNN (DCNN) compared to previous models, consisting of spatially separable convolutions working on time and feature domain separately. Alongside, we use atten…
Deep Convolutional Neural Networks for Fire Detection in Images
Detecting fire in images using image processing and computer vision techniques has gained a lot of attention from researchers during the past few years. Indeed, with sufficient accuracy, such systems may outperform traditional fire detection equipment. One of the most promising techniques used in this area is Convolutional Neural Networks (CNNs). However, the previous research on fire detection with CNNs has only been evaluated on balanced datasets, which may give misleading information on real-world performance, where fire is a rare event. Actually, as demonstrated in this paper, it turns out that a traditional CNN performs relatively poorly when evaluated on the more realistically balance…