Search results for "sparsity"

showing 10 items of 14 documents

An Extension of the DgLARS Method to High-Dimensional Relative Risk Regression Models

2020

In recent years, clinical studies, where patients are routinely screened for many genomic features, are becoming more common. The general aim of such studies is to find genomic signatures useful for treatment decisions and the development of new treatments. However, genomic data are typically noisy and high dimensional, not rarely outstripping the number of patients included in the study. For this reason, sparse estimators are usually used in the study of high-dimensional survival data. In this paper, we propose an extension of the differential geometric least angle regression method to high-dimensional relative risk regression models.

Clustering high-dimensional dataComputer sciencedgLARS Gene expression data High-dimensional data Relative risk regression models Sparsity · Survival analysisLeast-angle regressionRelative riskStatisticsEstimatorRegression analysisExtension (predicate logic)High dimensionalSettore SECS-S/01 - StatisticaSurvival analysis
researchProduct

Event Reconstruction

2014

Event reconstruction is one of the most important step in digital forensic investigations. It allows investigators to have a clear view of the events that have occurred over time. Event reconstruction is a complex task which requires exploration of a large amount of events due to the pervasiveness of new technologies nowadays. Any evidence produced at the end of the investigative process must also meet the requirements of the courts, such as reproducibility, verifiability, validation, etc. After defining the most important concepts of event reconstruction, a survey of the challenges of this field and solutions proposed so far is given in this chapter. Irish Research Council Science Foundati…

EngineeringDigital ForensicEmerging technologiesProcess (engineering)[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]Digital forensicsEvent Reconstruction02 engineering and technologyField (computer science)Task (project management)[INFO.INFO-CY]Computer Science [cs]/Computers and Society [cs.CY]020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringEvent reconstructionbusiness.industryStatisticsDigital holography020207 software engineeringData science[ INFO.INFO-CY ] Computer Science [cs]/Computers and Society [cs.CY][INFO.INFO-OH] Computer Science [cs]/Other [cs.OH][INFO.INFO-CY] Computer Science [cs]/Computers and Society [cs.CY]Terahertz imaging[ INFO.INFO-OH ] Computer Science [cs]/Other [cs.OH]State (computer science)businessSparsity
researchProduct

Sparsity-aware narrowband interference mitigation and subcarriers selection in OFDM-based cognitive radio networks

2016

In this paper, the performance of an orthogonal frequency division multiplexing overlay cognitive radio network with subcarrier selection schemes is investigated. We propose three subcarrier selection techniques that reduce the level of interference at the primary base station based on collected channel state information from the different network nodes. Approximated outage probability expressions are also derived and verified by simulations for the different studied techniques. In addition, we propose and investigate a new approach for asynchronous narrowband interference (NBI) estimation and mitigation in cognitive radio networks. The proposed approach does not require prior knowledge of …

EngineeringOrthogonal frequency-division multiplexingCognitive radioRadio systems02 engineering and technologyInterference (wave propagation)SubcarrierBase station0203 mechanical engineering0202 electrical engineering electronic engineering information engineeringElectronic engineeringSignal reconstructionRadio interferenceInterference mitigationOrthogonal frequency division multiplexingbusiness.industryComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSCo-channel interference020302 automobile design & engineering020206 networking & telecommunicationsCompressive sensingCognitive networkWave interferenceRadioNarrow band interferenceCognitive radioChannel state informationSecondary recoveryChannel state informationbusinessCognitive networkSparsity
researchProduct

A Sparsity-Aware Approach for NBI Estimation and Mitigation in Large Cognitive Radio Networks

2016

Underlay cognitive networks should follow strict interference thresholds to operate in parallel with primary networks. This constraint limits their transmission power and eventually the coverage area. Therefore, in this paper, we first design a new approach for asynchronous narrow-band interference (NBI) estimation and mitigation in orthogonal frequency-division multiplexing cognitive radio networks that does not require prior knowledge of the NBI characteristics. Our proposed approach allows the primary user to exploit the sparsity of the secondary users' interference signal to recover it and cancel it based on sparse signal recovery theory. We also propose two subcarrier selection schemes…

EngineeringOrthogonal frequency-division multiplexingComputer system recoveryCognitive radio02 engineering and technologyInterference (wave propagation)SubcarrierFrequency-division multiplexingRecovery0502 economics and business0202 electrical engineering electronic engineering information engineeringElectronic engineeringCost constraintsUnderlaySignal reconstructionOrthogonal frequency division multiplexingbusiness.industry05 social sciences020206 networking & telecommunicationsCompressive sensingWave interferenceCognitive networkNarrow band interferenceCognitive radioCompressed sensingSecondary recoverySignal interferenceFrequency estimationbusinessCognitive networkSparsity050203 business & management2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)
researchProduct

Secondary users selection and sparse narrow-band interference mitigation in cognitive radio networks

2018

Spectrum scarcity is a critical problem that may reduce the effectiveness of wireless technologies and services. To address this problem, different spectrum management techniques have been proposed in the literature such as overlay cognitive radio (CR) where the unlicensed users can share the same spectrum with the licensed users. The main challenges in overlay CR networks are the identification and detection of the Primary User (PU) signals in a multi-source narrow-band interference (NBI) scenario. Therefore, in this paper, we investigate the performance of an orthogonal frequency division multiplexing (OFDM) overlay CR network with Secondary Users (SUs) and subcarriers selection schemes. …

Interference mitigationComputer Networks and Communicationsbusiness.industryComputer scienceOrthogonal frequency-division multiplexing020206 networking & telecommunications020302 automobile design & engineering02 engineering and technologyCompressive sensingNarrow-band interferenceCognitive networkInterference (wave propagation)Spectrum management[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]Cognitive radio0203 mechanical engineeringChannel state information0202 electrical engineering electronic engineering information engineeringElectronic engineeringWirelessbusinessCognitive networkSparsityOFDMComputer Communications
researchProduct

Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint

2022

Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…

Rank (linear algebra)Computer scienceMatrix normlow-rankmatrix decompositionsymbols.namesaketoiminnallinen magneettikuvausOrthogonalitytensorsTensor (intrinsic definition)Kronecker deltaTucker decompositionHumansElectrical and Electronic Engineeringcore tensorsparsity constraintRadiological and Ultrasound Technologybusiness.industrysignaalinkäsittelyfeature extractionsparse matricesBrainPattern recognitionbrain modelingMagnetic Resonance Imagingfunctional magnetic resonance imagingComputer Science ApplicationsConstraint (information theory)data modelssymbolsNoise (video)Artificial intelligencebusinessmulti-subject fMRI dataSoftwareAlgorithmsTucker decomposition
researchProduct

Sparse relative risk regression models

2020

Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…

Statistics and ProbabilityClustering high-dimensional dataComputer sciencedgLARSInferenceScale (descriptive set theory)BiostatisticsMachine learningcomputer.software_genreRisk Assessment01 natural sciencesRegularization (mathematics)Relative risk regression model010104 statistics & probability03 medical and health sciencesNeoplasmsCovariateHumansComputer Simulation0101 mathematicsOnline Only ArticlesSurvival analysis030304 developmental biology0303 health sciencesModels Statisticalbusiness.industryLeast-angle regressionRegression analysisGeneral MedicineSurvival AnalysisHigh-dimensional dataGene expression dataRegression AnalysisArtificial intelligenceStatistics Probability and UncertaintySettore SECS-S/01 - StatisticabusinessSparsitycomputerBiostatistics
researchProduct

The conditional censored graphical lasso estimator

2020

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many applied fields, such as genomics, different types of data are collected on the same system, and it is not uncommon that some of these datasets are subject to censoring as a result of the measurement technologies used, such as data generated by polymerase chain reactions and flow cytometer. When the overall objective is that of network inference, at possibly different levels of a system, information coming from different sources and/or different steps of the analysis can be integrated into one model with the use of conditional graphical models. In this paper, we develop a doubly penalized inferential procedure for…

Statistics and ProbabilityFOS: Computer and information sciencesComputer scienceGaussianInferenceData typeTheoretical Computer Sciencehigh-dimensional settingDatabase normalizationMethodology (stat.ME)symbols.namesakeLasso (statistics)Graphical modelConditional Gaussian graphical modelcensored graphical lassoStatistics - MethodologyHigh-dimensional settingconditional Gaussian graphical modelssparsityEstimatorCensoring (statistics)Censored graphical lassoComputational Theory and MathematicssymbolsCensored dataStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaSparsityAlgorithm
researchProduct

A differential-geometric approach to generalized linear models with grouped predictors

2016

We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important properties that distinguish it from the group lasso. First, its solution curve is based on the invariance properties of a generalized linear model. Second, it adds groups of variables based on a group equiangularity condition, which is shown to be related to score statistics. An adaptive version, which includes weights based on the Kullback-Leibler divergence, improves its variable selection fea…

Statistics and ProbabilityGeneralized linear modelStatistics::TheoryMathematical optimizationProper linear modelGeneral MathematicsORACLE PROPERTIESGeneralized linear modelSPARSITYGeneralized linear array model01 natural sciencesGeneralized linear mixed modelCONSISTENCY010104 statistics & probabilityScore statistic.LEAST ANGLE REGRESSIONLinear regressionESTIMATORApplied mathematicsDifferential geometry0101 mathematicsDivergence (statistics)MathematicsVariance functionDifferential-geometric least angle regressionPATH ALGORITHMApplied MathematicsLeast-angle regressionScore statistic010102 general mathematicsAgricultural and Biological Sciences (miscellaneous)Group lassoGROUP SELECTIONStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesSettore SECS-S/01 - Statistica
researchProduct

cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values

2023

Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse co…

Statistics and Probabilityconditional Gaussian graphical modelscglasso conditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing dataglassosparsityhigh-dimensionalityconditional Gaussian graphical models glasso high-dimensionality sparsity censoring missing datacglassomissing datacensoringStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaSoftware
researchProduct