Search results for "spectra"

showing 10 items of 3542 documents

The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties

2017

A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 +/- 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same a globin combined with two copies of three very similar beta subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology.…

---0301 basic medicinegenetic structuresProtein ConformationGreenlandlcsh:MedicineRESONANCE RAMAN-SPECTRAHETERODONTUS-PORTUSJACKSONISpectrum Analysis RamanBiochemistrychemistry.chemical_compoundHemoglobinsProtein structureAMINO-ACID SEQUENCEAnimal CellsSequence Analysis ProteinRed Blood CellsUreaNOTOTHENIOID FISHESPost-Translational Modificationlcsh:ScienceHemeChondrichthyesMultidisciplinarybiologyChemistryOrganic CompoundsChemical ReactionsVertebrateEukaryotaMOLECULAR ADAPTATIONSMicrocephalusGlobinsChemistryBiochemistryOptical EquipmentVertebratesPhysical SciencesEngineering and TechnologyCellular TypesResearch ArticleEnvironmental MonitoringProtein BindingQUATERNARY STRUCTURESAllosteric regulationEquipmentSTRETCHING FREQUENCIESHeme03 medical and health sciencesOXYGEN-BINDINGbiology.animalAnimals14. Life underwaterGlobinHemoglobinPhotolysisBlood Cells030102 biochemistry & molecular biologyLaserslcsh:ROrganic ChemistryOrganismsChemical CompoundsBiology and Life SciencesProteinsxxxCell Biologybiology.organism_classificationCARTILAGINOUS FISHOxygen030104 developmental biologySomniosusFishSharkslcsh:QHemoglobinProtein MultimerizationELASMOBRANCH HEMOGLOBINElasmobranchiiPLoS ONE
researchProduct

Use of Density Functional Based Tight Binding Methods in Vibrational Circular Dichroism.

2018

Vibrational circular dichroism (VCD) is a spectroscopic technique used to resolve the absolute configuration of chiral systems. Obtaining a theoretical VCD spectrum requires computing atomic polar and axial tensors on top of the computationally demanding construction of the force constant matrix. In this study we evaluated a VCD model in which all necessary quantities are obtained with density functional based tight binding (DFTB) theory. The analyzed DFTB parametrizations fail at providing accurate vibrational frequencies and electric dipole gradients but yield reasonable normal modes at a fraction of the computational cost of density functional theory (DFT). Thus, by applying DFTB in comp…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyChemistryQUÍMICA QUÂNTICA02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSpectral line0104 chemical sciencesDipoleTight bindingNormal modeYield (chemistry)Vibrational circular dichroismPolarDensity functional theorySDG 7 - Affordable and Clean EnergyPhysical and Theoretical Chemistry0210 nano-technologyThe journal of physical chemistry. A
researchProduct

Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.

2001

Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps from B800 to B850 at room temperature is longer than the corresponding rates in Rhodopseudomonas acidophila and Rhodobacter sphaeroides. We observed variations (0.9-1.2 ps) of B800-850 energy transfer times at different B800 excitation wavelengths, the fastest time (0.9 ps) was obtained with 800 nm excitation. At 830 nm excitation the energy transfer to the B850 ring takes place within 0.5 ps. The m…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybiologyChemistryExcitonConfiguration interactionbiology.organism_classificationSpectral lineSurfaces Coatings and FilmsRhodobacter sphaeroidesUltrafast laser spectroscopyMaterials ChemistrySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryAtomic physicsAbsorption (electromagnetic radiation)SpectroscopyExcitation
researchProduct

Constant sign and nodal solutions for nonlinear robin equations with locally defined source term

2020

We consider a parametric Robin problem driven by a nonlinear, nonhomogeneous differential operator which includes as special cases the p-Laplacian and the (p,q)-Laplacian. The source term is parametric and only locally defined (that is, in a neighborhood of zero). Using suitable cut-off techniques together with variational tools and comparison principles, we show that for all big values of the parameter, the problem has at least three nontrivial smooth solutions, all with sign information (positive, negative and nodal).

010102 general mathematicsMathematical analysisMathematics::Spectral Theory01 natural sciencesLocally defined reactionTerm (time)Critical groups010101 applied mathematicsNonlinear systemConstant sign and nodal solutionsSettore MAT/05 - Analisi MatematicaModeling and SimulationQA1-9390101 mathematicsNonlinear maximum principleConstant (mathematics)NODALMathematicsAnalysisSign (mathematics)MathematicsNonlinear regularity
researchProduct

Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States

2012

We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in $${(\mathbb {C}^d)^{\otimes k}}$$ , where k and p/d k are fixed while d → ∞. When k = 1, the Marcenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ( $${(1+\sqrt{p/d^k})^2}$$ ) but the smallest eigenvalue $${(\min(0,1-\sqrt{p/d^k})^2)}$$ and the spectral density in between. We use the method of moments to show that for k > 1 the largest eigenvalue is still approximately $${(1+\sqrt{p/d^k})^2}$$ and the spectral density approaches that of the Marcenko-Pastur law, generalizing the random matrix…

010102 general mathematicsSpectral densityStatistical and Nonlinear PhysicsMethod of moments (probability theory)01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesakeDistribution (mathematics)Product (mathematics)Gaussian integralsymbolsTensor0101 mathematicsRandom matrixMathematical PhysicsEigenvalues and eigenvectorsMathematicsCommunications in Mathematical Physics
researchProduct

Long-term evolution of luminescent properties in CdI2 crystals

2016

Fresh and aged melt-grown or gas-phase grown CdI2 crystals are studied by means of low-temperature photoluminescence spectroscopy. Noticeable transformations of emission spectra are observed after long-term aging. The formation of nanostructures containing cadmium oxide and cadmium hydroxide as well as the changes in local surrounding of iodine atoms and the possible growth of polytypic modifications of CdI2 are taken into account when considering the diversity of optical spectra.

010302 applied physicsCadmium hydroxideZone meltingPhotoluminescenceMaterials sciencePhysics and Astronomy (miscellaneous)General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesSpectral linechemistry.chemical_compoundchemistry0103 physical sciencesCadmium oxideEmission spectrum0210 nano-technologySpectroscopyLuminescence
researchProduct

The role of structural disorder on luminescence of Eu-doped Na0.5Bi0.5TiO3

2020

A detailed analysis of photoluminescence of Eu-doped Na0.5Bi0.5TiO3 (NBT) is performed using it as a tool for describing the local structure of NBT. The obtained results reveal the low symmetry of the Eu3+ local environment in NBT, as indicated by the observed maximal number of sublevels of the 5D0→7F1 and the 5D0→7F2 luminescence transitions, clearly observed at low temperatures. Approximation of the luminescence spectra by Gaussian peaks provides valuable information about the shift of the involved levels upon change of the excitation wavelength. Variation in the strength of the crystal field in Eu-doped NBT is evaluated. Temperature dependence of the luminescence above room temperature i…

010302 applied physicsExcitation wavelengthMaterials sciencePhotoluminescenceDopingGeneral Physics and AstronomyLuminescence spectra02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsLocal structureCrystal0103 physical sciencesLocal environment0210 nano-technologyLuminescenceJournal of Applied Physics
researchProduct

High-frequency electrodeless lamps in argon–mercury mixtures

2005

In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…

010302 applied physicsGas-discharge lampArgonAcoustics and Ultrasonics[SPI.PLASMA]Engineering Sciences [physics]/PlasmasAnalytical chemistrychemistry.chemical_elementPlasmaRadiationCondensed Matter Physics01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionMercury (element)010309 opticsWavelengthchemistrylawExcited state0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputingMilieux_MISCELLANEOUS
researchProduct

Pressure-induced insulator-to-metal transition in α-SnWO4

2016

In-situ high-pressure W L1 and L3 edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure- induced insulator-to-metal transition in α-SnWO4 in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.

010302 applied physicsHistoryCondensed matter physicsAbsorption spectroscopyBand gapChemistryStrong interactionchemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral lineComputer Science ApplicationsEducationMetalOctahedronvisual_art0103 physical sciencesvisual_art.visual_art_medium0210 nano-technologySpectroscopyTinJournal of Physics: Conference Series
researchProduct

New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.

2010

Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…

010302 applied physicsLigand field theoryAnataseMaterials scienceScatteringElectron energy loss spectroscopyAnalytical chemistry02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionG bandlaw[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciences0210 nano-technologyElectronic band structureInstrumentationComputingMilieux_MISCELLANEOUSMonochromator
researchProduct