Search results for "spin"

showing 10 items of 5044 documents

Singletons on AdSn

2000

We define the singletons for the invariance group \( {\overline S _n} = {\overline {SO} _0}\left( {2,n - 1} \right) \)) of the AdS n space-time. We write down some of their important properties and characterizations. It is found that the tensor product of singletons of spin 0 or 1/2 decomposes into representations that are a kind of massless representations of S n . Other kinds of massless representations, related to singletons, are also studied and a comparison is made. Various Gupta-Bleuler triplets are constructed for singletons and for massless representations.

Massless particlePhysicsTensor productGroup (mathematics)High Energy Physics::PhenomenologyAnti-de Sitter spaceMathematical physicsSpin-½
researchProduct

Resolving the Fundamentals of Magnetotransport in Metals with Ultrafast Terahertz Spectroscopy

2016

Using terahertz spectroscopy we directly resolved the fundamentals of spin-dependent conductivity in ferromagnetic metals. We quantified the differences in conduction by Fermi-level electrons with opposite spins on the sub-100 fs timescale of electron momentum scattering.

SpinsFerromagnetismCondensed matter physicsScatteringChemistryCondensed Matter::Strongly Correlated ElectronsElectronConductivityThermal conductionTerahertz spectroscopy and technologyMagnetic fieldInternational Conference on Ultrafast Phenomena
researchProduct

Localized Motion in Supercooled Glycerol as Measured by 2 H-NMR Spin-Lattice Relaxation and Incoherent Neutron Scattering

1991

Selectively deuterated glycerol has been subjected to 2H-NMR spin-lattice relaxation and quasi-elastic neutron scattering experiments. The measurements yield relaxation rates and a non-Gaussian Q-dependence of the Debye-Waller factor which are different for the two hydrogen sites. The data analysis shows that below the onset of the glass transition α-process the hydrogens perform a local motion (≈ 10-12 s) in addition to what is expected from harmonic phonons. The resulting mean-square displacements are highly temperature dependent but are significantly smaller than those found in van der Waals glasses. Amplitudes and activation energies of the carbon-bonded and oxygen-bonded hydrogens are …

Materials scienceCondensed matter physicsPhononSpin–lattice relaxationGeneral Physics and AstronomyNeutron scatteringMolecular physicssymbols.namesakeDeuteriumsymbolsRelaxation (physics)van der Waals forceGlass transitionSupercoolingEurophysics Letters (EPL)
researchProduct

Magnetic coupling and spin topology in linear oxalato-bridged tetranuclear chromium(III)–copper(II) complexes with aromatic diimine ligands

2013

Abstract A novel heterotetranuclear chromium(III)–copper(II) complex of formula {[CrIII(bpy)(ox)2]2CuII2(bpy)2(ox)}·6H2O (1) has been synthesized by the ligand exchange reaction between Ph4P[CrIII(bpy)(ox)2]·H2O and [CuII(bpy)2(NO3)]NO3·MeOH in methanol (bpy = 2,2′-bipyridine; ox2− = oxalate dianion). The X-ray crystal structure of 1 consists of neutral oxalato-bridged CrIII2Cu2II zigzag entities which are formed by the monodentate coordination of two [CrIII(bpy)(ox)2]− mononuclear anionic units through one of its two oxalato groups toward a [CuII2(bpy)2(ox)]2+ dinuclear cationic moiety featuring relatively long axial bonds at the square pyramidal CuII ions. Variable temperature (2.0–300 K)…

Inorganic ChemistryMagnetizationDenticitySpin statesChemistryLigandMaterials ChemistryCrystal structurePhysical and Theoretical ChemistryTopologyMagnetic susceptibilitySquare pyramidal molecular geometryDiiminePolyhedron
researchProduct

Route towards Dirac and Weyl antiferromagnetic spintronics

2017

Topological quantum matter and spintronics research have been developed to a large extent independently. In this Review we discuss a new role that the antiferromagnetic order has taken in combining topological matter and spintronics. This occurs due to the complex microscopic symmetries present in antiferromagnets that allow, e.g., for topological relativistic quasiparticles and the newly discovered N\'{e}el spin-orbit torques to coexist. We first introduce the concepts of topological semimetals and spin-orbitronics. Secondly, we explain the antiferromagnetic symmetries on a minimal Dirac semimetal model and the guiding role of $\textit{ab initio}$ calculations in predictions of examples of…

PhysicsSpintronicsDirac (software)Order (ring theory)02 engineering and technologyQuantum Hall effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTheoretical physics0103 physical sciencesHomogeneous spaceQuasiparticleAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsGeneral Materials Science010306 general physics0210 nano-technologyQuantumphysica status solidi (RRL) - Rapid Research Letters
researchProduct

A 12-year-old boy with severe back pain and blast-like cells in the CSF

1999

Malemedicine.medical_specialtyLumbar Vertebraebusiness.industryLymphoblastCentral nervous systemBack anatomyMagnetic Resonance ImagingSurgeryCerebrospinal fluidmedicine.anatomical_structureEl NiñoBack PainPediatrics Perinatology and Child HealthmedicineHumansSevere back painLymphocytesBorrelia InfectionsChildbusinessEuropean Journal of Pediatrics
researchProduct

Rydberg excitation of trapped cold ions: a detailed case study

2011

We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.

PhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasIonsymbols.namesakeDipoleQuantum state0103 physical sciencesRydberg formulasymbolsPhysics::Atomic PhysicsIon trapAtomic physicsQuantum Physics (quant-ph)010306 general physicsSpin (physics)Realization (systems)ExcitationNew Journal of Physics
researchProduct

Certain doping concentrations caused half-metallic graphene

2017

This work is supported by National Natural Science Foundation of China (Grant No. 21173096).

Spin polarizationMaterials scienceChemistry(all)02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCondensed Matter::Materials ScienceHalf-metallawCondensed Matter::SuperconductivityPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]Spin (physics)DopantCondensed matter physicsSpin polarizationGrapheneDopingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryHalf-metalDopant concentrationGraphene0210 nano-technologyGraphene nanoribbonsJournal of Saudi Chemical Society
researchProduct

Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

2018

The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (∼0.1 V), that are those at which t…

Materials sciencePhysics and Astronomy (miscellaneous)MagnetoresistanceSpintronicsCondensed matter physicsVALVESSpin valve02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpace chargePoole–Frenkel effectTRANSPORTOrganic semiconductorINTERFACESPIN INJECTIONElectrical resistance and conductanceElectrical resistivity and conductivity0103 physical sciencesMAGNETORESISTANCEHETEROJUNCTIONfilms010306 general physics0210 nano-technologyTEMPERATURE
researchProduct

Eosinophilic Meningitis due toAngiostrongylus cantonensisin Germany

2009

We report a case of eosinophilic meningitis due to Angiostrongylus cantonensis in a patient who returned from Thailand. The presence of a compatible epidemiologic history and eosinophilia in cerebrospinal fluid (CSF) lead to the diagnosis, which was confirmed by detection of specific antibodies. After treatment with albendazole and corticosteroids he recovered completely.

AdultMalePathologymedicine.medical_specialtyEosinophilic MeningitisBlotting WesternAlbendazoleAlbendazoleCerebrospinal fluidAdrenal Cortex HormonesGermanyEosinophiliamedicineAnimalsHumansEosinophiliaHelminthsMeningitisCerebrospinal FluidStrongylida InfectionsAnthelminticsTravelbiologybusiness.industryAngiostrongylus cantonensisGeneral MedicineThailandbiology.organism_classificationmedicine.diseaseAngiostrongylus cantonensisSpecific antibodyImmunologymedicine.symptombusinessMeningitismedicine.drugJournal of Travel Medicine
researchProduct