Search results for "sputter deposition"
showing 10 items of 93 documents
On the possibility of synthesizing multilayered coatings in the (Ti,Al)N system by RGPP: A microstructural study
2019
International audience; Radiofrequency magnetron sputtering combined with reactive gas pulsing process was used to synthesize two titanium aluminum nitride multilayer films using a periodically controlled nitrogen flow rate changing from 0.4 to 1 sccm (sample S04-1) and from 0 to 1 sccm (sample S0-1). A metallic TiAl buffer layer was deposited on the etched substrates before the deposition to enhance their adhesion. The films were characterized using mainly transmission electron microscopy and electron diffraction. The role of the crystallinity of the buffer TiAl metallic layer deposited before gas introduction on the growth orientations is emphasized. It is shown that the formation of a mu…
Structural and electrical properties of magnetron sputtered Ti(ON) thin films:The case of TiN doped in situ with oxygen.
2009
International audience; Incorporation of oxygen into TiN lattice results in formation of titanium oxynitrides, TiOxNy that have become particularly interesting for photocatalytic applications. Elaboration as well as characterization of TiN and in situ oxygen-doped thin films is the subject of this paper. Thin films, 250–320nm in thickness, have been deposited by dc-pulsed magnetron reactive sputtering from Ti target under controllable gas flows of Ar, N2 and O2. Optical monitoring of Ti plasma emission line at = 500nm has been implemented in order to stabilize the sputtering rate. Scanning electron microscopy (SEM), X-ray diffraction in grazing incidence (GIXRD), micro-Raman spectroscopy, X…
Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Io…
2019
Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure. These fabricated carbon-Li2O-TiO2 microstructures consisting of various Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion microbatteries. The described micropillar fabrication method is a low-cost, substrate independent, single-step, room-temperature vacuum process utilizing a mature industrial complementary metal-oxide-semiconductor (CMOS)-compatible technology. Furthermore, tentative considerat…
Sputtered transparent electrodes for optoelectronic devices
2021
Summary Transparent electrodes and metal contacts deposited by magnetron sputtering find applications in numerous state-of-the-art optoelectronic devices, such as solar cells and light-emitting diodes. However, the deposition of such thin films may damage underlying sensitive device layers due to plasma emission and particle impact. Inserting a buffer layer to shield against such damage is a common mitigation approach. We start this review by describing how sputtered transparent top electrodes have become archetypal for a broad range of optoelectronic devices and then discuss the possible detrimental consequences of sputter damage on device performance. Next, we review common buffer-layer m…
Tailoring of highly porous SnO2 and SnO2-Pd thin films
2019
Abstract Tin oxide is a material that attracts attention due to variety of technological applications. The main parameters that influence its properties are morphology, crystalline structure and stoichiometry. Researchers try to develop nanostructured thin films with tunable parameters that would conform its technological applications. Herein, we report on the preparation and characterization of highly porous SnO2 and Pd-doped SnO2 thin films. These films were deposited in the form of nanorods with controllable geometry. Such morphology was achieved by utilizing glancing angle deposition (GLAD) with assisted magnetron sputtering. This arrangement allowed preparation of slanted pillars, zig-…
<title>Properties of ITO transparent electrode thin films on different substrates</title>
2003
Indium tin oxide (ITO) is optically transparent semiconductor that finds extensive applications in liquid crystal displays, photovoltaic cells, touch screen displays, electrochromic smart windows and more. As with all such electrode materials, there is a compromise between conductivity and optical properties. Different substrate materials and underlying layers are playing important role in transparency (better contrast and less absorption, increased brightness), surface morphology (smoothness, homogeneously) and conductivity of the ITO films. We compared optical, electrical and morphology properties of ITO films onto polymer substrate, obtained from company "SIDRABE Inc." (Latvia) and ITO f…
Characterization of LiFePO4/C Composite Thin Films Using Electrochemical Impedance Spectroscopy
2012
The composite LiFePO4/C thin films were prepared on steel substrate by radio frequency (RF) magnetron sputtering. Electrochemical properties of the obtained thin films were investigated by cyclic voltammetry charge-discharge measurements and electrochemical impedance spectroscopy (EIS). The films annealed at 550 °C exhibited a couple of redox peaks at 3.45 V vs. Li/Li + characteristic for the electrochemical lithium insertion/extraction in LiFePO4. At low current rate such composite thin film showed a discharge capacity of over 110 mAh g -1 . The dependence of charge transfer resistance, double layer capacitance and lithium diffusion coefficients on applied electrode potential were calculat…
Magnetron sputtering fabrication of α-Al2O3:Cr powders and their thermoluminescence properties
2018
The authors gratefully acknowledge the financial support for this work from research grant ERA.NET RUS Plus Nr.609556.
Preparation of Ta-O-Based Tunnel Junctions to Obtain Artificial Synapses Based on Memristive Switching
2014
Magnetron sputtering and optical lithography are standard techniques to prepare magnetic tunnel junctions with lateral dimensions in the micrometer range. Here we present the materials and techniques to deposit the layer stacks, define the structures, and etch the devices. In the end, we obtain tunnel junction devices exhibiting memristive switching for potential use as artificial synapses.
A study of solar thermal absorber stack based on CrAlSiNx/CrAlSiNxOy structure by ion beams
2019
Renewable energies are foreseen as a major energy resource for next generations. Among several energy sources and technologies available, Concentrated Solar Power (CSP) technology has a great potential, but it needs to be optimised, in particular to reduce the costs, with an increase of the operating temperature and long term stability. This goal can be achieved by tailoring the composition and multilayer structure of films. In this work we present and discuss the results obtained from solar absorber coatings based on nitride/oxynitride structures. A four-layer film structure, W/CrAlSiNx(HA)/CrAlSiNxOy(LA)/SiAlOx, was deposited on stainless steel substrates using magnetron sputtering deposi…