Search results for "stationary"

showing 10 items of 245 documents

Hölder stability for Serrin’s overdetermined problem

2015

In a bounded domain \(\varOmega \), we consider a positive solution of the problem \(\Delta u+f(u)=0\) in \(\varOmega \), \(u=0\) on \(\partial \varOmega \), where \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a locally Lipschitz continuous function. Under sufficient conditions on \(\varOmega \) (for instance, if \(\varOmega \) is convex), we show that \(\partial \varOmega \) is contained in a spherical annulus of radii \(r_i 0\) and \(\tau \in (0,1]\). Here, \([u_\nu ]_{\partial \varOmega }\) is the Lipschitz seminorm on \(\partial \varOmega \) of the normal derivative of u. This result improves to Holder stability the logarithmic estimate obtained in Aftalion et al. (Adv Differ Equ 4:907–93…

Applied Mathematics010102 general mathematicsMathematical analysisRegular polygonSerrin’s problemFunction (mathematics)Directional derivativeLipschitz continuity01 natural sciencesDomain (mathematical analysis)010101 applied mathematicsOverdetermined systemCombinatoricsBounded functionOverdetermined problemHarnack’s inequalityStationary surface0101 mathematicsStabilityMethod of moving planeHarnack's inequalityMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Solidification behavior of the theta system 2-propanol/poly(n-butyl methacrylate) I. Influences of thermoreversible gelation on stationary flow

1994

Zero shear viscosities, η0, were determined by means of a magnetoviscometer for melts of poly(n-butyl methacrylate) (M = 8.7 to 450 kg/mol, T =53.5 to 200°C) and for concentrated solutions of the highest molecular weight sample in isopropanol (T = 34.8 to 131.5 °C). Master curves can be constructed in both cases if the reference temperature is set proportional to the gelation temperature of the particular fluid. Special intersegmental interactions (eventually leading to thermoreversible gelation) can above all be felt in η0 (T) and in M c , the critical molecular weight determined in plots of log η0 vs. log M. As the temperature is lowered, the behavior changes from WLF to Arrhenius, and M …

Arrhenius equationMaterials scienceTheta solventThermodynamicsCondensed Matter PhysicsMethacrylatePoly n-butyl methacrylatePropanolShear (sheet metal)symbols.namesakechemistry.chemical_compoundchemistryPolymer chemistrysymbolsStationary flowGeneral Materials ScienceGlass transitionRheologica Acta
researchProduct

Comparison of approaches for generation of fully non-stationary artificial accelerograms

2019

The modelling of the seismic input is a critical aspect when non-linear time-history analyses (NLTHAs) are carried out. As a matter of fact, seismic response of structures is very sensitive to the input excitation time history. The present work aims to highlight the differences in the input modelling and the assessment of seismic response of three r.c. structures employing four generation methods of fully non-stationary artificial accelerogram sets at a given construction site. For each method, seven accelerograms are generated and employed to perform NLTHAs on three r.c. structures having irregular mass and stiffness distributions. The original contribution of the paper relies in the crite…

Artificial accelerograms Fully non-stationary random processes Spectrum-compatible RC structuresSettore ICAR/09 - Tecnica Delle Costruzioni
researchProduct

Comparison of top of the atmosphere GERB measured radiances with independent radiative transfer simulations obtained at the Valencia Anchor Station a…

2005

The purpose of this work is to compare top of the atmosphere (TOA) radiances as measured by the Geostationary Earth Radiation Budget (GERB) instrument on board the METEOSAT-8 (METEOSAT Second Generation) satellite to equivalent independent radiances obtained from radiative transfer simulations performed using surface and atmospheric measured parameters gathered during the GERB Surface Ground Validation Campaign at the Valencia Anchor Station (VAS) reference area in February 2004. In this paper we try to extend the methodology previously developed and tested for the NASA Clouds and the Earth's Radiant Energy System (CERES) instrument in the framework of the SEVIRI and GERB Cal/val Area for L…

AtmosphereMeteorologylawRadiative transferRadiosondeLongwaveEnvironmental scienceSatelliteBidirectional reflectance distribution functionShortwaveGeostationary Earth Radiation BudgetRemote sensinglaw.inventionSPIE Proceedings
researchProduct

Simulation of Future Geostationary Ocean Color Images

2012

The objective of this work is to simulate global images that would be provided by a theoretical ocean color sensor on a geostationary orbit at longitude 0, in order to assess the range of radiance value data reaching the sensor throughout the day for 20 spectral bands similar to those of the Ocean and Land Color Imager (OLCI). The secondary objective is to assess the illumination and viewing geometries that result in sunglint. For this purpose, we combined a radiative transfer model for ocean waters (Hydrolight) and a radiative transfer model for atmosphere (MODTRAN) to construct the simulated radiance images at the sea surface and at the Top-Of-Atmosphere (TOA). Bio-optical data from GlobC…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyMODTRANSolar zenith angleSunglint01 natural sciences010309 opticsAtmospheric radiative transfer codes13. Climate actionOcean color0103 physical sciencesGeostationary orbitRadianceEnvironmental scienceComputers in Earth Sciences[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSZenith0105 earth and related environmental sciencesRemote sensingIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
researchProduct

On the Angola low interannual variability and its role in modulating ENSO effects in southern Africa

2019

Abstract The Angola low is a summertime low pressure system that affects the convergence of low-level moisture fluxes into southern Africa. Interannual variations of the Angola low reduce the seasonal prediction skills for this region that arise from coupled atmosphere–ocean variability. Despite its importance, the interannual dynamics of the Angola low, and its relationship with El Niño–Southern Oscillation (ENSO) and other coupled modes of variability, are still poorly understood, mostly because of the scarcity of atmospheric data and short-term duration of atmospheric reanalyses in the region. To bypass this issue, we use a long-term (3500 year) run from a 50-km-resolution global coupled…

Atmospheric Science010504 meteorology & atmospheric sciencesMoistureTeleconnection010502 geochemistry & geophysics01 natural sciencesStationary waveLow-pressure areaStationary wavesSeasonal forecastingInterannual variabilityEl Niño Southern Oscillation[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology13. Climate actionTeleconnectionsClimatologySeasonal forecastingAfricaEnvironmental scienceENSO0105 earth and related environmental sciencesTeleconnection
researchProduct

2015

Abstract. Atmospheric concentrations of nitrous acid (HONO), one of the major precursors of the hydroxyl radical (OH) in the troposphere, significantly exceed the values predicted by the assumption of a photostationary state (PSS) during daytime. Therefore, additional sources of HONO were intensively investigated in the last decades. This study presents budget calculations of HONO based on simultaneous measurements of all relevant species, including HONO and OH at two different measurement heights, i.e. 1 m above the ground and about 2 to 3 m above the canopy (24 m above the ground), conducted in a boreal forest environment. We observed mean HONO concentrations of about 6.5 × 108 molecules …

Atmospheric ScienceNitrous acidDaytime010504 meteorology & atmospheric sciencesMeteorologyAdvection010501 environmental sciencesNoonAtmospheric sciences01 natural sciencesTropospherechemistry.chemical_compoundchemistryPhotostationary stateAtmospheric chemistrySoil water0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Comparative study of three satellite image time-series decomposition methods for vegetation change detection

2018

International audience; Satellite image time-series (SITS) methods have contributed notably to detection of global change over the last decades, for instance by tracking vegetation changes. Compared with multi-temporal change detection methods, temporally highly resolved SITS methods provide more information in a single analysis, for instance on the type and consistency of change. In particular, SITS decomposition methods show a great potential in extracting various components from non-stationary time series, which allows for an improved interpretation of the temporal variability. Even though many case studies have applied SITS decomposition methods, a systematic comparison of common algori…

Atmospheric ScienceNon-stationary010504 meteorology & atmospheric sciencesBFASTSTL0211 other engineering and technologiesMRA-WT02 engineering and technology01 natural sciencesNormalized Difference Vegetation Indexlcsh:OceanographyDecomposition (computer science)medicineSatellite imagerylcsh:GC1-1581Computers in Earth SciencesNDVI time series021101 geological & geomatics engineering0105 earth and related environmental sciencesGeneral Environmental ScienceRemote sensingApplied Mathematicslcsh:QE1-996.5Global change15. Life on landSeasonalitymedicine.diseaselcsh:GeologyEnvironmental scienceChange detectionSatellite Image Time Seriesmedicine.symptomVegetation (pathology)[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingChange detection
researchProduct

Image simulation of geostationary sensor dedicated to ocean color

2010

A method of image simulation of geostationary sensor dedicated to ocean color for open water (case1) and coastal water (case2) is presented in this paper. This method uses HYDROLIGHT to model the radiative transfer in order to obtain the water surface radiance. MeRIS level 3 products have been used for input water components to provide a realistic spatial distribution. The atmospheric radiative transfer model and the sensor model finely lead to satellite remote sensing images. This system allows to evaluate the dynamic range of BOA and TOA radiances depending on solar and viewing angles in operational situation and latter their influence on water composition retrieval.

Atmospheric radiative transfer codesMeteorologyOcean colorRadianceGeostationary orbitRadiative transferHyperspectral imagingEnvironmental scienceAtmospheric modelViewing angleRemote sensing2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
researchProduct

Ab Initio Study of the Mechanism and Thermochemistry of the Atmospheric Reaction NO + O3 → NO2 + O2

2002

The atmospheric reaction between NO and ozone has been investigated using ab initio methods. The structures of all reactants, products, intermediates, and transition states of reaction 1 have been optimized and characterized at the UMP2(full) level of theory. The 6-31G(d), 6-311G(d), and 6-311G(df) basis sets have also been used to calibrate the effect of the basis set functions on the optimized structures and energies of all stationary points. Finally, we have reoptimized at the UMP4(SDQ, full)/6-31G(d) and 6-311G(d) levels. The energetics of the reaction has been studied more accurately within the G2 and G2(MP2) schemes. Also, QCISD(T)/6-311G(d) single-point calculations have been perform…

Atmospheric reactionsChemistryThermochemistryAb initioPhysical chemistryPhysical and Theoretical ChemistryStationary pointBasis setTransition stateThe Journal of Physical Chemistry A
researchProduct