Search results for "subcellular localization"

showing 10 items of 53 documents

Liver X Receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization

2015

Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantl…

LXRβCytoplasmmedicine.medical_specialtyHydrocarbons FluorinatedColonColorectal cancerCaspase 1BiologyLigandsCell Line03 medical and health sciences0302 clinical medicineCell Line TumorInternal medicineRXRαsubcellular localizationmedicineHumansIntestinal MucosaLiver X receptorCytotoxicityLiver X Receptors030304 developmental biologySulfonamides0303 health sciencesRetinoid X Receptor alphaRetinoid X receptor alphaCaspase 1PyroptosisEpithelial CellsHCT116 CellsOrphan Nuclear ReceptorsSubcellular localizationmedicine.disease3. Good healthEnzyme ActivationGene Expression Regulation NeoplasticEndocrinologycolon cancerOncologyCell culture030220 oncology & carcinogenesisColonic NeoplasmsCancer researchPriority Research PaperOncotarget
researchProduct

Mitochondrial G protein coupled receptor kinase 2 regulates proinflammatory responses in macrophages.

2013

G-protein-coupled receptor kinase 2 (GRK2) levels are elevated in inflammation but its role is not clear yet. Here we show that GRK2 expression is dependent on NFκB transcriptional activity. In macrophages, LPS induces GRK2 accumulation in mitochondria increasing biogenesis. The overexpression of the carboxy-terminal domain of GRK2 (βARK-ct), known to displace GRK2 from plasma membranes, in macrophages induces earlier localization of GRK2 in mitochondria in response to LPS leading to increased mt-DNA transcription, reduced ROS production and cytokines expression. Our study shows the relevance of GRK2 subcellular localization in macrophage’s biology and its potential therapeutic properties i…

LipopolysaccharidesG-Protein-Coupled Receptor Kinase 2BiophysicsβARK-ctGRK2InflammationMitochondrionBiochemistryArticleProinflammatory cytokineMiceStructural BiologyGeneticsmedicineAnimalsHumansReceptorMolecular BiologyInflammationG protein-coupled receptor kinasebiologyKinaseSubcellular localizationBeta adrenergic receptor kinaseMacrophagesCell BiologySubcellular localizationCell biologyMitochondriabiology.proteinmedicine.symptomReactive Oxygen SpeciesSignal Transduction
researchProduct

Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells

2012

Plant aminopropyltransferases consist of a group of enzymes that transfer aminopropyl groups derived from decarboxylated S-adenosyl-methionine (dcAdoMet or dcSAM) to propylamine acceptors to produce polyamines, ubiquitous metabolites with positive charge at physiological pH. Spermidine synthase (SPDS) uses putrescine as amino acceptor to form spermidine, whereas spermine synthase (SPMS) and thermospermine synthase (TSPMS) use spermidine as acceptor to synthesize the isomers spermine and thermospermine respectively. In previous work it was shown that both SPDS1 and SPDS2 can physically interact with SPMS although no data concerning the subcellular localization was reported. Here we study the…

Macromolecular AssembliesProteomicsS-AdenosylmethioninePlant anatomyImmunohistoquímicaArabidopsislcsh:MedicineSecondary MetabolismSpermineExpressionPlant ScienceSpermidine synthaseBiochemistrychemistry.chemical_compoundBimolecular fluorescence complementationCytosolMolecular Cell BiologyPolyaminesPlant Genomicslcsh:SciencePlant Growth and DevelopmentMultidisciplinarybiologyPlant BiochemistryArabidopsis-ThalianaGenomicsImmunohistochemistryMetabolismeFunctional GenomicsBiochemistrySpermine synthasePlant proteinPlant PhysiologyMechanismResearch ArticleHistologyAcyltransferasePlant Cell BiologyActive Transport Cell NucleusSpermidine SynthaseBimolecular fluorescence complementationProtein InteractionsBiologyCell NucleusCrystal-Structurelcsh:RHistologiaBotanyProtein interactionsSubcellular localizationAnatomia vegetalExpressió gènicaMolecular WeightSpermidineMetabolismchemistryDecarboxylasebiology.proteinPutrescineBotànicalcsh:QGene expressionSpermidine synthase
researchProduct

Inactivation of electrophilic metabolites by glutathione S-transferases and limitation of the system due to subcellular localization

1977

Benzo(a)pyrene was activated to metabolites mutagenic for Salmonella typhimurium TA 98 by liver microsomes from control and phenobarbital treated mice. Under these conditions benzo(a)pyrene 4,5-oxide accounts for most of the mutagenicity. We have therefore investigated (1) the conjugation of benzo(a)pyrene 4,5-oxide with glutathione and (2) the effect of glutathione on the mutagenicity of benzo(a)pyrene.

MaleSalmonella typhimuriumendocrine systemHealth Toxicology and MutagenesisMutagenToxicologymedicine.disease_causeMicechemistry.chemical_compoundCytosolBiotransformationpolycyclic compoundsmedicineAnimalsBenzopyrenesBiotransformationGlutathione Transferasebiologyfungifood and beveragesGeneral MedicineGlutathioneSubcellular localizationGlutathioneCytosolGlutathione S-transferaseBenzo(a)pyrenechemistryBiochemistryMicrosomes Liverbiology.proteinPyreneMutagensArchives of Toxicology
researchProduct

Tetraspan vesicle membrane proteins: Synthesis, subcellular localization, and functional properties

2002

Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-…

Multicellular organismBiochemistryMembrane proteinVesicleSynaptoporinBiologySubcellular localizationPeptide sequenceTransmembrane proteinExocytosisCell biology
researchProduct

Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell…

2005

AbstractThe movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representin…

MutantMolecular Sequence DataPlasmodesmaBiologyCircular dichroismIlarvirusGFPViral ProteinsVirologyMovement proteinTobaccoAmino Acid SequenceMovement proteinRNA binding domainProtein secondary structureProtoplastsRNABiological Transportbiology.organism_classificationSubcellular localizationSubcellular locationMolecular biologyVirusProtein Structure TertiaryPlant LeavesPlant Viral Movement ProteinsPrunus necrotic ringspot virusRNA ViralCell-to-cell movementPeptidesProteïnesPrunus necrotic ringspot virusBinding domainVirology
researchProduct

Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration?

2021

RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked …

NeurodegenerationCellAmyotrophic Lateral SclerosisRNA-Binding ProteinsRNA-binding proteinBiologymedicine.diseaseSubcellular localizationBiochemistrymedicine.anatomical_structureFrontotemporal Dementiamental disordersmedicinePosttranslational modificationHumansRNA-Binding Protein FUSAmyotrophic lateral sclerosisMolecular BiologyNeuroscienceProtein Processing Post-TranslationalFunction (biology)Frontotemporal dementiaTrends in biochemical sciences
researchProduct

Secretory Pathway Research: The More Experimental Systems the Better

2012

Transient gene expression, in plant protoplasts or specific plant tissues, is a key technique in plant molecular cell biology, aimed at exploring gene products and their modifications to examine functional subdomains, their interactions with other biomolecules, and their subcellular localization. Here, we highlight some of the major advantages and potential pitfalls of the most commonly used transient gene expression models and illustrate how ectopic expression and the use of dominant mutants can provide insights into protein function.

Protein functionMolecular cell biologySecretory PathwayProtoplastsResearchfungiMutantfood and beveragesBiological TransportCell BiologyPlant ScienceBiologySubcellular localizationCell biologyPlant LeavesPerspectiveGene expressionEctopic expressionGeneSecretory pathwayFluorescent DyesThe Plant Cell
researchProduct

Identification of Trans-Golgi Network Proteins in Arabidopsis thaliana Root Tissue

2014

Knowledge of protein subcellular localization assists in the elucidation of protein function and understanding of different biological mechanisms that occur at discrete subcellular niches. Organelle-centric proteomics enables localization of thousands of proteins simultaneously. Although such techniques have successfully allowed organelle protein catalogues to be achieved, they rely on the purification or significant enrichment of the organelle of interest, which is not achievable for many organelles. Incomplete separation of organelles leads to false discoveries, with erroneous assignments. Proteomics methods that measure the distribution patterns of specific organelle markers along densit…

ProteomicsArabidopsis thalianaArabidopsisorganelle proteomicsProteomicsPlant RootsBiochemistryArticlesymbols.namesakeArtificial IntelligenceTandem Mass SpectrometryArabidopsisOrganelleArabidopsis thalianaChromatography Reverse-PhaseimmunoisolationbiologyArabidopsis Proteinstrans-Golgi networkGeneral ChemistryGolgi apparatusbiology.organism_classificationSubcellular localizationLOPITCell biologyIsobaric labelingphenoDiscomachine learningsymbolsIdentification (biology)Journal of Proteome Research
researchProduct

Differential occurrence of S100A7 in breast cancer tissues: A proteomic-based investigation

2012

Purpose The present study reports for the first time a large-scale proteomic screening of the occurrence, subcellular localization and relative quantification of the S100A7 protein among a group of 100 patients, clinically grouped for the diagnosis of infiltrating ductal carcinoma (IDC). Experimental design To this purpose, the methods of differential proteomics, Western blotting, and immunohistochemistry were used. Results The identity of two isoforms of the protein was assessed by mass spectrometry and immunologically confirmed. Moreover, we proved by immunocytochemical applications the exclusive localization of the protein within the neoplastic cells. The correlation of S100A7 expression…

S100A7Gene isoformProteomicsIn silicoClinical BiochemistryMolecular Sequence DataBreast NeoplasmsBiologyProteomicsBioinformaticsS100 Calcium Binding Protein A7medicineHumansProtein IsoformsElectrophoresis Gel Two-DimensionalAmino Acid SequenceSettore BIO/06 - Anatomia Comparata E CitologiaS100 ProteinsCancerReproducibility of ResultsSubcellular localizationmedicine.diseaseImmunohistochemistryS100A7 proteomics breast cancerNeoplasm ProteinsBlotSpectrometry Mass Matrix-Assisted Laser Desorption-IonizationCancer researchImmunohistochemistryFemale
researchProduct