Search results for "subependymal zone"

showing 10 items of 24 documents

Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone.

2009

We sought to address the fundamental question of how stem cell microenvironments can regulate self-renewal. We found that Notch was active in astroglia-like neural stem cells (NSCs), but not in transit-amplifying progenitors of the murine subependymal zone, and that the level of Notch transcriptional activity correlated with self-renewal and multipotency. Moreover, dividing NSCs appeared to balance renewal with commitment via controlled segregation of Notch activity, leading to biased expression of known (Hes1) and previously unknown (Egfr) Notch target genes in daughter cells. Pigment epithelium-derived factor (PEDF) enhanced Notch-dependent transcription in cells with low Notch signaling,…

Cell divisionTranscription GeneticNotch signaling pathwayGene ExpressionBiologyMicePEDFEpendymaSubependymal zoneBasic Helix-Loop-Helix Transcription FactorsAnimalsNuclear Receptor Co-Repressor 1Nerve Growth FactorsProgenitor cellHES1Receptor Notch1Eye ProteinsCells CulturedSerpinsHomeodomain ProteinsNeuronsTranscription Factor HES-1General NeuroscienceAge FactorsTranscription Factor RelACell DifferentiationNeural stem cellErbB ReceptorsAdult Stem CellsTranscription Factor HES-1NeuroscienceSignal TransductionNature neuroscience
researchProduct

Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to…

2012

The adult mouse subependymal zone (SEZ) harbours adult neural stem cells (aNSCs) that give rise to neuronal and oligodendroglial progeny. However it is not known whether the same aNSC can give rise to neuronal and oligodendroglial progeny or whether these distinct progenies constitute entirely separate lineages. Continuous live imaging and single-cell tracking of aNSCs and their progeny isolated from the mouse SEZ revealed that aNSCs exclusively generate oligodendroglia or neurons, but never both within a single lineage. Moreover, activation of canonical Wnt signalling selectively stimulated proliferation within the oligodendrogliogenic lineage, resulting in a massive increase in oligodendr…

Central Nervous SystemMaleReceptor Platelet-Derived Growth Factor alphaWnt signallingNerve Tissue ProteinsBiologyWnt3 ProteinMiceNeural Stem CellsLive cell imagingSubependymal zoneBasic Helix-Loop-Helix Transcription FactorsAnimalsCell LineageWnt Signaling PathwayCells CulturedProgenitorCell ProliferationCell CycleWnt signaling pathwayCell DifferentiationCell BiologyOligodendrocyte Transcription Factor 2Neural stem cellCell biologyMice Inbred C57BLOligodendrogliaFemaleCell DivisionNature cell biology
researchProduct

Transcriptional repression of Bmp2 by p21(Waf1/Cip1) links quiescence to neural stem cell maintenance.

2013

Relative quiescence and self renewal are defining features of adult stem cells, but their potential coordination remains unclear. Subependymal neural stem cells (NSCs) lacking cyclin-dependent kinase (CDK) inhibitor (CKI) 1a (p21) exhibit rapid expansion that is followed by their permanent loss later in life. Here we demonstrate that transcription of the gene encoding bone morphogenetic protein 2 (Bmp2) in NSCs is under the direct negative control of p21 through actions that are independent of CDK. Loss of p21 in NSCs results in increased levels of secreted BMP2, which induce premature terminal differentiation of multipotent NSCs into mature non-neurogenic astrocytes in an autocrine and/or …

Cyclin-Dependent Kinase Inhibitor p21Time FactorsCellular differentiationBone Morphogenetic Protein 2Nerve Tissue ProteinsBiologyTransfectionParacrine signallingMiceNeural Stem CellsCyclin-dependent kinaseTransduction GeneticSubependymal zoneAnimalsCell Line TransformedRegulation of gene expressionMice KnockoutGeneral NeuroscienceNeurogenesisCell CycleAge FactorsCell DifferentiationNeural stem cellCell biologyKi-67 AntigenBromodeoxyuridineGene Expression RegulationMutagenesisCulture Media Conditionedbiology.proteinNeoplastic Stem CellsCarrier ProteinsNeuroscienceAdult stem cellSubcellular FractionsNature neuroscience
researchProduct

Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

2012

Summary In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulate…

Cèl·lules mare neuralsCyclin-Dependent Kinase Inhibitor p21Chromatin ImmunoprecipitationImmunoblottingArticle03 medical and health sciencesMice0302 clinical medicineSOX2Neural Stem CellsCyclin-dependent kinaseNeurosphereSubependymal zoneGeneticsExpressió genèticaAnimalsProgenitor cellCells Cultured030304 developmental biology0303 health sciencesbiologyCell growthReverse Transcriptase Polymerase Chain ReactionSOXB1 Transcription FactorsNeurogenesisCell BiologyImmunohistochemistryNeural stem cellMice Mutant Strains3. Good healthAdult Stem Cellsnervous systemCancer researchbiology.proteinMolecular Medicinebiological phenomena cell phenomena and immunity030217 neurology & neurosurgeryProtein BindingCell stem cell
researchProduct

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Cell population analysis of the adult murine subependymal neurogenic lineage by flow cytometry

2021

Summary This protocol provides a flow-cytometry-based procedure to classify and isolate all cells of the adult rodent subependymal zone (SEZ) neurogenic lineage, without the need for reporter mice, into different cell populations, including three neural stem cell (NSC) fractions with molecular signatures that are coherent with single-cell transcriptomics. Additionally, their cycling behavior can be assessed by means of 5-ethynyl-2′-deoxyuridine (EdU) incorporation. Our method allows the isolation of different NSC fractions and the functional assay of their cycling heterogeneity and quiescence-activation transitions. For complete details on the use, execution, and outcomes of this protocol, …

MaleScience (General)Lineage (genetic)CellPopulationCell Culture TechniquesSingle CellBiologyGeneral Biochemistry Genetics and Molecular BiologyCell LineFlow cytometryTranscriptomeMiceQ1-390Neural Stem CellsEpendymaProtocolmedicineSubependymal zoneAnimalsFlow Cytometry/Mass Cytometryeducationeducation.field_of_studyGeneral Immunology and Microbiologymedicine.diagnostic_testGene Expression ProfilingStem CellsGeneral NeuroscienceCell BiologyFlow CytometryNeural stem cellCell biologyMice Inbred C57BLmedicine.anatomical_structureFemaleSingle-Cell AnalysisStem cellTranscriptomeNeuroscienceSTAR Protocols
researchProduct

Paracrine regulation of neural stem cells in the subependymal zone.

2012

Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial sub…

NeurogenesisBiophysicsParacrine CommunicationNeovascularization PhysiologicBiologyBiochemistrySynaptic TransmissionParacrine signallingNeural Stem CellsCell MovementNeurosphereEpendymaParacrine CommunicationSubependymal zoneAnimalsHumansStem Cell NicheMolecular BiologyCell ProliferationNeurogenesisOlfactory BulbNeural stem cellNeuroepithelial cellAstrocytesImmunologyChoroid PlexusStem cellNeuroscienceArchives of biochemistry and biophysics
researchProduct

Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-α Receptor Signaling.

2021

Summary Adult stem cells (SCs) transit between the cell cycle and a poorly defined quiescent state. Single neural SCs (NSCs) with quiescent, primed-for-activation, and activated cell transcriptomes have been obtained from the subependymal zone (SEZ), but the functional regulation of these states under homeostasis is not understood. Here, we develop a multilevel strategy to analyze these NSC states with the aim to uncover signals that regulate their level of quiescence/activation. We show that transitions between states occur in vivo and that activated and primed, but not quiescent, states can be captured and studied in culture. We also show that peripherally induced inflammation promotes a …

NeurogenesisInflammationBiologyReceptors Tumor Necrosis Factor03 medical and health sciences0302 clinical medicineNeural Stem CellsLateral VentriclesGeneticsSubependymal zonemedicineHumansReceptor030304 developmental biologyInflammation0303 health sciencesMicrogliaTumor Necrosis Factor-alphaNeurogenesisCell BiologyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structurenervous systemReceptors Tumor Necrosis Factor Type IMolecular MedicineSignal transductionmedicine.symptom030217 neurology & neurosurgeryAdult stem cellSignal TransductionCell stem cell
researchProduct

Architecture and cell types of the adult subventricular zone: in search of the stem cells.

1998

Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where t…

NeuronsRostral migratory streamGeneral NeuroscienceStem CellsNeurogenesisSubventricular zoneBiologyOlfactory BulbNeural stem cellCerebral VentriclesNeuroepithelial cellCellular and Molecular Neurosciencemedicine.anatomical_structurenervous systemCell MovementInterneuronsSubependymal zonemedicineAnimalsStem cellNeuroscienceCell DivisionAdult stem cellJournal of neurobiology
researchProduct

Neurogenesis in adult subventricular zone

2002

Much excitement has been generated by the identification of adult brain regions harboring neural stem cells and their continual generation of new neurons throughout life. This is an important departure from traditional views of the germinal potential of the postnatal brain. However, a more profound

NeuronsRostral migratory streamGeneral NeuroscienceStem CellsNeurogenesisSubventricular zoneCell DifferentiationBiologyMini-ReviewNeural stem cellLateral ventriclesmedicine.anatomical_structureCell MovementNeuroblast migrationAstrocytesLateral VentriclesmedicineSubependymal zoneAnimalsHumansRegenerationStem cellNeuroscience
researchProduct