Search results for "supersolid"
showing 4 items of 4 documents
Polarization angle dependence of the breathing modes in confined one-dimensional dipolar bosons
2021
Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to investigate interactions and dimensionality effects. We consider a fully polarized quasi-one dimensional dipolar quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with an effective quasi-one dimensional Hamiltonian in the single-mode approximation, and derive the equation of state using a variational approximation based on the Lieb-Liniger gas Bethe Ansatz wavefunction or perturbation theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach, and find them in good agreement with re…
Supersolid Behavior of Light
2008
We will show how light can form stationary structures on dielectric periodic media such that their dynamics present simultaneous features of spatial long range order and superfluidity. This phenomenon is normally referred to as supersolidity.
Supersolid-superfluid phase separation in the extended Bose-Hubbard model
2021
Recent studies have suggested a new phase in the extended Bose-Hubbard model in one dimension at integer filling [1,2]. In this work, we show that this new phase is phase-separated into a supersolid and superfluid part, generated by mechanical instability. Numerical simulations are performed by means of the density matrix renormalization group algorithm in terms of matrix product states. In the phase-separated phase and the adjacent homogeneous superfluid and supersolid phases, we find peculiar spatial patterns in the entanglement spectrum and string-order correlation functions and show that they survive in the thermodynamic limit. In particular, we demonstrate that the elementary excitatio…
Observation of a superfluid component within solid helium
2011
We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface. peerReviewed