6533b7d0fe1ef96bd125a58d

RESEARCH PRODUCT

Polarization angle dependence of the breathing modes in confined one-dimensional dipolar bosons

Maria Luisa ChiofaloRoberta CitroS. De PaloEdmond Orignac

subject

[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]FOS: Physical sciences02 engineering and technology01 natural sciencescollective modesBethe ansatzSupersolidsymbols.namesakedipolar gas supersoliddipolar gas0103 physical sciencesQuantum systemtrapped atoms010306 general physicsWave functionUltracold atoms - Dipolar atoms - Luttinger liquidsBosonPhysicsCondensed Matter::Quantum Gasesdipolar interactionsBrewster's angle021001 nanoscience & nanotechnologyPolarization (waves)3. Good healthsupersolidQuantum Gases (cond-mat.quant-gas)Quantum electrodynamicssymbols0210 nano-technologyHamiltonian (quantum mechanics)Condensed Matter - Quantum Gases

description

Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to investigate interactions and dimensionality effects. We consider a fully polarized quasi-one dimensional dipolar quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with an effective quasi-one dimensional Hamiltonian in the single-mode approximation, and derive the equation of state using a variational approximation based on the Lieb-Liniger gas Bethe Ansatz wavefunction or perturbation theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach, and find them in good agreement with recent experimental findings.

10.1103/physrevb.103.115109http://arxiv.org/abs/2012.07444