Search results for "surface tension"
showing 10 items of 150 documents
Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.
2008
Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The mode…
Capillary Waves in a Colloid-Polymer Interface
2004
The structure and the statistical fluctuations of interfaces between coexisting phases in the Asakura-Oosawa (AO) model for a colloid--polymer mixture are analyzed by extensive Monte Carlo simulations. We make use of a recently developed grand canonical cluster move with an additional constraint stabilizing the existence of two interfaces in the (rectangular) box that is simulated. Choosing very large systems, of size LxLxD with L=60 and D=120, measured in units of the colloid radius, the spectrum of capillary wave-type interfacial excitations is analyzed in detail. The local position of the interface is defined in terms of a (local) Gibbs surface concept. For small wavevectors capillary wa…
Effects of finite thickness on interfacial widths in confined thin films of coexisting phases
1999
The capillary broadening of a 2-phase interface is investigated both experimentally and theoretically. When a binary mixture in a thin film with thickness D segregates into two coexisting phases the interface between the two phases may form parallel to the substrate due to preferential surface attraction of one of the components. We show that the interfacial profile (of intrinsic width w0) is broadened due to capillary waves, which lead to fluctuations, of correlation length of the local interface positions in the directions parallel to the confining walls. We postulate that acts as an upper cutoff for the spectrum of capillary waves on the interface, so that the effective mean square inter…
Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems
2001
The objective of the present study was to evaluate the parameters, which characterize the pulsing flow of the gas and liquid through a bed, namely the frequency of pulsation, the velocity of the pulses and the pulse structure, for foaming systems. The paper presents the results of experiments aimed at determining the effect of the foaming power and the surface tension of liquid phase on the values of the measured parameters.
Shapes and oscillations of raindrops with reduced surface tensions: Measurements at the Mainz vertical wind tunnel
2013
Abstract Important characteristics of raindrops pertinent to fields in atmospheric sciences such as weather radar or pollution scavenging are drop shape, oscillation frequency and amplitude, as well as the internal circulation. Atmospheric raindrops are never pure water drops but contain additional components like aerosol particles and dissolved species. Surface active substances, when present, reduce the surface tension of raindrops and, thus, increase the drop deformation which in turn affects breakup and coalescence, pollutant scavenging, and, finally, the formation of precipitation. Experiments were performed at the Mainz vertical wind tunnel with raindrops freely suspended at their ter…
Investigation of Finite-Size Effects in the Determination of Interfacial Tensions
2014
The interfacial tension between coexisting phases of a material is an important parameter in the description of many phenomena such as crystallization, and even today its accurate measurement remains difficult. We have studied logarithmic finite-size corrections in the determination of the interfacial tension with large scale Monte Carlo simulations, and have identified several novel contributions which not only depend on the ensemble, but also on the type of the applied boundary conditions. We present results for the Lennard-Jones system and the Ising model, as well as for hard spheres, which are particularly challenging. In the future, these findings will contribute to the understanding a…
Macroscopic equations of motion for two-phase flow in porous media
1998
The established macroscopic equations of motion for two phase immiscible displacement in porous media are known to be physically incomplete because they do not contain the surface tension and surface areas governing capillary phenomena. Therefore a more general system of macroscopic equations is derived here which incorporates the spatiotemporal variation of interfacial energies. These equations are based on the theory of mixtures in macroscopic continuum mechanics. They include wetting phenomena through surface tensions instead of the traditional use of capillary pressure functions. Relative permeabilities can be identified in this approach which exhibit a complex dependence on the state v…
Monte Carlo Study of the Isotropic-Nematic Interface in Suspensions of Spherocylinders
2007
The isotropic to nematic transition in suspensions of anisotropic colloids is studied by means of grand canonical Monte Carlo simulation. From measurements of the grand canonical probability distribution of the particle density, the coexistence densities of the isotropic and the nematic phase are determined, as well as the interfacial tension.
How do droplets on a surface depend on the system size?
2002
Abstract We investigate the thermodynamics of inhomogeneous polymer melts in the framework of a coarse grained off-lattice model. Properties of the liquid–vapour interface and the packing of the melt in contact with an attractive wall are considered. We employ Monte Carlo simulations in the grand canonical ensemble to determine excess free energies, the wetting temperature and the pre-wetting line, as well as the pre-wetting critical point. Having determined the wetting properties and the phase diagram of the model polymer, we perform canonical Monte Carlo simulations of small droplets on a surface. This allows us to study the dependence of droplet size on the wetting properties. It is foun…
The ensemble switch method for computing interfacial tensions
2015
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.