6533b81ffe1ef96bd1277d06

RESEARCH PRODUCT

How do droplets on a surface depend on the system size?

Marcus MüllerLuis G. MacdowellKurt Binder

subject

Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsContact angleSurface tensionGrand canonical ensembleColloid and Surface ChemistryWetting transitionChemistryCritical point (thermodynamics)Monte Carlo methodThermodynamicsWettingPhase diagram

description

Abstract We investigate the thermodynamics of inhomogeneous polymer melts in the framework of a coarse grained off-lattice model. Properties of the liquid–vapour interface and the packing of the melt in contact with an attractive wall are considered. We employ Monte Carlo simulations in the grand canonical ensemble to determine excess free energies, the wetting temperature and the pre-wetting line, as well as the pre-wetting critical point. Having determined the wetting properties and the phase diagram of the model polymer, we perform canonical Monte Carlo simulations of small droplets on a surface. This allows us to study the dependence of droplet size on the wetting properties. It is found that the contact angles of small droplets may be very much larger than those observed for macroscopic drops.

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000176724500023&KeyUID=WOS:000176724500023