0000000000002885

AUTHOR

Marcus Müller

Monte Carlo Study of Critical Point Shifts in Thin Films

We report preliminary results of Monte Carlo simulations of critical point shifts in thin slit-like capillaries. By making use of the isomorphism with an Ising model subject to bulk and surface fields and employing a multi-cluster update algorithm with ghost-spin term we obtain the coexistence curve and the behavior at the critical point for various film thicknesses D.

research product

Properties of the Ising magnet confined in a corner geometry

Abstract The properties of Ising square lattices with nearest neighbor ferromagnetic exchange confined in a corner geometry, are studied by means of Monte Carlo simulations. Free boundary conditions at which boundary magnetic fields ± h are applied, i.e., at the two boundary rows ending at the lower left corner a field + h acts, while at the two boundary rows ending at the upper right corner a field − h acts. For temperatures T less than the critical temperature T c of the bulk, this boundary condition leads to the formation of two domains with opposite orientation of the magnetization direction, separated by an interface which for T larger than the filling transition temperature T f ( h ) …

research product

ORDERING KINETICS IN QUASI-ONE-DIMENSIONAL ISING-LIKE SYSTEMS

We present results of a Monte Carlo simulation of the kinetics of ordering in the two-dimensional nearest-neighbor Ising model in anL xM geometry with two free boundaries of length M≫L. This model can be viewed as representing an adsorbant on a stepped surface with mean terrace widthL. We follow the ordering kinetics after quenches to temperatures 0.25 ⩽ T/Tc ⩽ 1 starting from a random initial configuration at a coverage ofΘ=0.5 in the corresponding lattice gas picture. The systems evolve in time according to a Glauber kinetics with nonconserved order parameter. The equilibrium structure is given by a one-dimensional sequence of ordered domains. The ordering process evolves from a short ini…

research product

Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation

Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness ("capillary nematization"). The other transition is a continuous (or very weakly first-order) transition in the layers adjacent …

research product

Study of the dynamical approach to the interface localization–delocalization transition of the confined Ising model

Confined magnetic Ising films in a L ? D geometry (), with short-range competing magnetic fields?(h) acting at opposite walls along the D-direction, exhibit a slightly rounded localization?delocalization transition of the interface between domains of different orientations that runs parallel to the walls. This transition is the precursor of a wetting transition that occurs in the limit of infinite film thickness () at the critical curve Tw(h). For T Tw(h)) such an interface is bounded (unbounded) to the walls, while right at Tw(h) the interface is freely fluctuating around the centre of the film. Starting from disordered configurations, corresponding to , we quench to the wetting critical t…

research product

Avoiding Boundary Effects in Wang-Landau Sampling

A simple modification of the ``Wang-Landau sampling'' algorithm removes the systematic error that occurs at the boundary of the range of energy over which the random walk takes place in the original algorithm.

research product

Intermolecular structure factors of macromolecules in solution: Integral equation results

The inter-molecular structure of semidilute polymer solutions is studied theoretically. The low density limit of a generalized Ornstein-Zernicke integral equation approach to polymeric liquids is considered. Scaling laws for the dilute-to-semidilute crossover of random phase (RPA) like structure are derived for the inter-molecular structure factor on large distances when inter-molecular excluded volume is incorporated at the microscopic level. This leads to a non-linear equation for the excluded volume interaction parameter. For macromolecular size-mass scaling exponents, $\nu$, above a spatial-dimension dependent value, $\nu_c=2/d$, mean field like density scaling is recovered, but for $\n…

research product

Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain const…

research product

Interfaces between coexisting phases of polymer mixtures: Comparison between Monte Carlo simulations and theoretical predictions

Large scale Monte Carlo investigations of the interface between A-rich and B-rich phases of symmetric binary (AB) polymer mixtures are presented, using the bond fluctuation model of flexible chains with NA=NB=N=32 effective monomers. The temperature range studied, 0.144<T/Tc0.759, includes both the strong and the weak segregation limit. Interfacial free energy and interfacial structure are studied, and compared to predictions based on the selfconsistent field theory. Also the broadening of the interfacial width due to capillary waves is considered, and finite size effects due to the confinement of interfaces in thin films of polymer blends are discussed.

research product

Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.

Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The mode…

research product

Unmixing of Polymer Blends Confined in Ultrathin Films:  Crossover between Two-Dimensional and Three-Dimensional Behavior

The interplay between chain conformations and phase separation in binary symmetric polymer mixtures confined into thin films by "neutral" hard walls (i.e., walls that do not preferentially attract or repel one of the two components of the mixture) is studied by Monte Carlo simulations. Using the bond fluctuation model on a simple cubic lattice in the semi grand canonical ensemble, we locate the critical temperature of demixing via finite size scaling methods for a wide range of chain lengths (16/= N/= 256 effective monomers per chain) and film thicknesses (2/= D/= 19 lattice spacings). Simultaneously, we investigate the geometrical structure of the chains, showing that despite using melt de…

research product

Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations

We investigate how the dynamics of a single chain influences the kinetics of early stage phase separation in a symmetric binary polymer mixture. We consider quenches from the disordered phase into the region of spinodal instability. On a mean field level we approach this problem with two methods: a dynamical extension of the self consistent field theory for Gaussian chains, with the density variables evolving in time, and the method of the external potential dynamics where the effective external fields are propagated in time. Different wave vector dependencies of the kinetic coefficient are taken into account. These early stages of spinodal decomposition are also studied through Monte Carlo…

research product

Monte Carlo investigations of phase transitions: status and perspectives

Using the concept of finite-size scaling, Monte Carlo calculations of various models have become a very useful tool for the study of critical phenomena, with the system linear dimension as a variable. As an example, several recent studies of Ising models are discussed, as well as the extension to models of polymer mixtures and solutions. It is shown that using appropriate cluster algorithms, even the scaling functions describing the crossover from the Ising universality class to the mean-field behavior with increasing interaction range can be described. Additionally, the issue of finite-size scaling in Ising models above the marginal dimension (d*=4) is discussed.

research product

Directionality of light emission in three-dimensional opal-based photonic crystals (Invited Paper)

Experimental and theoretical studies of the emission directionality diagrams of a perylene dye covering the inner surface of three-dimensional opal-based photonic crystals with incomplete photonic bandgap are reported. Directionality diagram of emission intensity is interpreted in terms of the spontaneous emission suppression by photonic band gap and the emission enhancement due to photon focusing phenomenon. A theoretical model is based on the classical analysis of an angular distribution of the radiated power of a point dipole.

research product

Phase diagram of a mixed polymer brush

We investigate the structure and phase behavior of a two-component (binary) polymer brush in a solvent within self-consistent field theory as a function of the chains' stretching, the composition, and the incompatibility. Grafting the chains irreversibly prevents macrophase separation and the chains assemble into three-dimensional structures with lateral periodicity. At small incompatibilities a "ripple" phase is formed where different species aggregate into an array of parallel cylinders. At larger incompatibilities or asymmetric composition two "dimple" phases become stable, where different species form clusters which arrange on a quadratic (checkerboard structure) or hexagonal lattice.

research product

Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E

Polymeric materials pose a challenge for Monte Carlo simulations because of the widely spread length and time scales involved. Using large scale computer simulations we investigate the interfacial structure in a partially compatible polymer mixture. The problem is studied in the framework of a coarse grained lattice model - the bond fluctuation model on the simple cubic lattice, choosing N = 32 and lattice linear dimensions L × L × D up to 512 × 512 × 64. We employ a two dimensional geometric decomposition scheme to implement this algorithm on the CRAY T3E. The algorithm scales very well with the number of processors. The structure of polymer coils near interfaces between coexisting phases …

research product

Older adult psychopathology: international comparisons of self-reports, collateral reports, and cross-informant agreement

ABSTRACTObjectives:To conduct international comparisons of self-reports, collateral reports, and cross-informant agreement regarding older adult psychopathology.Participants:We compared self-ratings of problems (e.g. I cry a lot) and personal strengths (e.g. I like to help others) for 10,686 adults aged 60–102 years from 19 societies and collateral ratings for 7,065 of these adults from 12 societies.Measurements:Data were obtained via the Older Adult Self-Report (OASR) and the Older Adult Behavior Checklist (OABCL; Achenbach et al., 2004).Results:Cronbach’s alphas were .76 (OASR) and .80 (OABCL) averaged across societies. Across societies, 27 of the 30 problem items with the highest mean ra…

research product

Interfaces in the confined Ising system with competing surface fields

Abstract When a magnetic Ising film is confined in a L × M geometry ( L ⪡ M ) short-range competing magnetic fields ( h 1 ) are applied at opposite walls along the M -direction, a (weakly rounded) localization–delocalization transition of the interface between domains of different orientation that runs parallel to walls can be observed. This transition is the precursor of a wetting phase transition that occurs in the limit of infinite film thickness ( L → ∞ ) at the critical curve T w ( h 1 ) . For T T w ( h 1 ) ( T > T w ( h 1 ) ) such an interface is bound to (unbound from) the walls, while right at T w ( h 1 ) the interface is freely fluctuating around the center of the film. We present …

research product

A new boundary-controlled phase transition: Phase separation in an Ising bi-pyramid with competing surface fields

We study phase coexistence of an Ising ferromagnet in a bi-pyramid geometry with a square basal plane of linear extension 2L + 1. Antisymmetric surface fields act on the pyramid surfaces above and below the basal plane. In the limit L → ∞, the magnetisation stays zero at the bulk critical temperature, but becomes discontinuously non-zero at the cone filling critical temperature associated with a single pyramid. Monte Carlo simulations and scaling considerations show that this transition is described by a Landau theory with size-dependent coefficients that give rise to singular critical amplitudes.

research product

Concentration and energy fluctuations in a critical polymer mixture

A semi-grand-canonical Monte Carlo algorithm is employed in conjunction with the bond fluctuation model to investigate the critical properties of an asymmetric binary (AB) polymer mixture. By applying the equal peak-weight criterion to the concentration distribution, the coexistence curve separating the A-rich and B-rich phases is identified as a function of temperature and chemical potential. To locate the critical point of the model, the cumulant intersection method is used. The accuracy of this approach for determining the critical parameters of fluids is assessed. Attention is then focused on the joint distribution function of the critical concentration and energy, which is analysed usi…

research product

Interfaces in polymer blends

We investigate the structure and thermodynamics of interfaces in dense polymer blends using Monte Carlo (MC) simulations and self-consistent field (SCF) calculations. For structurally symmetric blends we find quantitative agreement between the MC simulations and the SCF calculations for excess quantities of the interface (e.g., interfacial tension or enrichment of copolymers at the interface). However, a quantitative comparison between profiles across the interface in the MC simulations and the SCF calculations has to take due account of capillary waves. While the profiles in the SCF calculations correspond to intrinsic profiles of a perfectly flat interface the local interfacial position f…

research product

How do droplets on a surface depend on the system size?

Abstract We investigate the thermodynamics of inhomogeneous polymer melts in the framework of a coarse grained off-lattice model. Properties of the liquid–vapour interface and the packing of the melt in contact with an attractive wall are considered. We employ Monte Carlo simulations in the grand canonical ensemble to determine excess free energies, the wetting temperature and the pre-wetting line, as well as the pre-wetting critical point. Having determined the wetting properties and the phase diagram of the model polymer, we perform canonical Monte Carlo simulations of small droplets on a surface. This allows us to study the dependence of droplet size on the wetting properties. It is foun…

research product

Enhanced sampling in simulations of dense systems

In the simulations of a variety of systems we encounter the problem of large relaxation times due to the dense packing of the systems constituents. We propose an algorithm to overcome this slowing down by temporarily allowing the constituents of a 3d systems to escape into a 4th space coordinate. The idea will be exemplified for the problem of a homopolymer collapse.

research product

Monte Carlo Simulations of Semi-Flexible Polymers

We present Monte Carlo simulations on the phase behavior of semiflexible macromolecules. For a single chain this question is of biophysical interest given the fact that long and stiff DNA chains are typically folded up into very tight compartments. So one can ask the question how the state diagram of a semiflexible chain differs from the coilglobule behavior of a flexible macromolecule. Another effect connected with rigidity of the chains is their tendency to aggregate and form nematically ordered structures. As a consequence one has two competing phase transitions: a gas-liquid and an isotropic-nematic transition potentially giving rise to a complicated phase diagram.

research product

Interface and Surface Properties of Short Polymers in Solution:  Monte Carlo Simulations and Self-Consistent Field Theory

We investigate the structure and thermodynamics of inhomogeneous polymer solutions in the framework of a coarse-grained off-lattice model. Properties of the liquidvapor interface and the packing of...

research product

Monte carlo studies of phase transitions in polymer blends and block copolymer melts

The unmixing transition of both symmetrical polymer blends AB (i.e. chain lengthsNA=NB=N) and asymmetrical ones (NB/NA=2,3) is studied by large-scale Monte Carlo simulations of the bond fluctuation model. Combination of semi-grand-canonical simulation techniques, «histogram reweighting» and finitesize scaling allows an accurate location of the coexistence curve in the critical region. The variation of the critical temperature with chain length (N) is studied and compared to theoretical predictions. For the symmetrical case, use of chain lengths up toN=512 allows a rough estimation of crossover scaling functions for the crossover from Ising to mean-field exponents. The order-disorder transit…

research product

Interface Localization-Delocalization in a Double Wedge: A New Universality Class with Strong Fluctuations and Anisotropic Scaling

Using Monte Carlo simulations and finite-size scaling methods we study ``wetting'' in Ising systems in a $L\ifmmode\times\else\texttimes\fi{}L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ pore with quadratic cross section. Antisymmetric surface fields ${H}_{s}$ act on the free $L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ surfaces of the opposing wedges, and periodic boundary conditions are applied along the $y$ direction. In the limit $L\ensuremath{\rightarrow}\ensuremath{\infty}$, ${L}_{y}/{L}^{3}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$, the system exhibits a new type of phase transition, which is the analog of the ``filling transition'' that occurs in a single wedge. It is charac…

research product

Conformational Changes of a Single Semiflexible Macromolecule Near an Adsorbing Surface: A Monte Carlo Simulation

The properties of a single semiflexible chain tethered to a planar surface with a long-ranged attractive potential are studied by means of Monte Carlo simulations. We employ the bond fluctuation lattice model and the Wang-Landau sampling technique. We present the diagram of states for semiflexible chains consisting of N = 64 and 128 monomer units as a function of temperature T and strength of the adsorption potential, epsilon(w), and also compare this with the diagram of states for flexible chains of these two lengths. The diagram of states consists of the regions of a coil, liquid globule, solid isotropic globule, adsorbed coil, and quasi-two-dimensional solid globule with nematic bond ord…

research product

Interfaces between coexisting phases in polymer mixtures: What can we learn from Monte Carlo simulations?

Symmetric binary polymer mixtures are studied by Monte Carlo simulation of the bond fluctuation model, considering both interfaces between coexisting bulk phases and interfaces confined in thin films. It is found that the critical behavior of interfacial tension and width is compatible with that of the Ising model, as expected from the universality principle. In the strong segregation limit, only qualitative but not quantitative agreement with the self-consistent field (SCF) theory is found. It is argued that the SCF theory requires √ 6 X √D for short-range forces, in agreement with experiment.

research product

Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study

Using extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film w…

research product

Simulation of Transport in Partially Miscible Binary Fluids: Combination of Semigrandcanonical Monte Carlo and Molecular Dynamics Methods

Binary Fluids that exhibit a miscibility gap are ubiquitous in nature (glass melts, polymer solutions and blends, mixtures of molten metals, etc.) and exhibit a delicate interplay between static and dynamic properties. This is exemplified for a simple model system, the symmetrical AB Lennard-Jones mixture. It is shown how semigrandcanonical Monte Carlo methods, that include A→B (B→A) identity switches as Monte Carlo moves, can yield the phase diagram, the interfacial tension between coexisting phases, and various pair correlation functions and structure factors. In addition to the build-up of long-ranged concentration correlations near the critical point, unmixing is also accompanied by the…

research product

Stability of thin polymer films: influence of solvents.

The interface and surface properties and the wetting behavior of polymer-solvent mixtures are investigated using Monte Carlo simulations and self-consistent field calculations. We carry out Monte Carlo simulations in the framework of a coarse-grained bead-spring model using short chains (oligomers) of N(P)=5 beads and a monomeric solvent, N(S)=1. The self-consistent field calculations are based on a simple phenomenological equation of state for compressible binary mixtures and we employ Gaussian chain model. The bulk behavior of the polymer-solvent mixture belongs to type III in the classification of van Konynenburg and Scott [Phil. Trans. R. Soc. London, Ser. A 298, 495 (1980)]. It is char…

research product

Polymeric alloys: Model materials for the understanding of the statistical thermodynamics of mixtures

Polymeric materials find industrial applications that are comparable to those of metals and ceramics.1 In addition to the great variability via the synthesis of various monomers and the choice of the degree of polymerization (N), alloying of polymers finds increasing attention for combining favorable materials properties.1,2 But polymeric (binary) alloys (A,B) of flexible polymers with chain lengths NA, NB are also most interesting for testing theoretical concepts: changing NA, NB one controls the entropy of mixing, keeping intermolecular forces invariant. Variation of these control parameters thus allows stringent tests of the theories on miscibility, unmixing etc. Furthermore, the large s…

research product

Lateral versus perpendicular segregation in mixed polymer brushes.

Grafting of incompatible polymers on a substrate prevents macrophase separation and the chains self-assemble laterally. Mixed brushes are exposed to different solvents and the morphology is observed via atomic force and x-ray photoemission microscopy. In a nonselective solvent the different species segregate into parallel cylinders ("ripple structure"). Upon exposure to a selective solvent, we encounter a transition to a "dimple" structure, in which the unfavored component forms clusters. Simultaneously, we observe an enhanced perpendicular segregation. The experimental observations are compared to self-consistent field calculations, where qualitative agreement is found.

research product

Mixed Polymer Brushes: Switching of Surface Behavior and Chemical Patterning at the Nanoscale

research product

Elastic properties of polymer interfaces: Aggregation of pure diblock, mixed diblock, and triblock copolymers

Block copolymers adsorbing to an interface between two immiscible homopolymers modify the elastic constants of this interface. Within self-consistent field calculations for Gaussian chains, we determine how the bending constants vary in dependence on the block copolymer concentration and architecture. Four phenomena are discussed. (i) When a tricritical or isotropic Lifshitz critical point is approached in a ternary mixture by varying the concentration of diblock copolymers or changing temperature, the elastic constants vanish. We determine the corresponding power laws, and show that the de Gennes--Taupin criterium for the stability of lamellar phases against undulations and the Ginzburg-La…

research product

A Successive Umbrella Sampling Algorithm to Sample and Overcome Free Energy Barriers

research product

Simulation of Phase Transitions of Single Polymer Chains: Recent Advances

The behaviour of a flexible polymer chain in solvents of variable quality in dilute solution is discussed both in the bulk and in the presence of an adsorbing wall. Monte Carlo simulations of coarse-grained bead-spring models and of the bond fluctuation model are presented and interpreted in terms of phenomenological theories and scaling concepts. Particular attention is paid to the behaviour of the polymer chain when the temperature of the polymer solution gets lower than the Theta temperature. It is argued that the adsorption transition line at the Theta temperature splits into lines of wetting and drying transitions of polymer globules attached to the wall. In addition, it is shown that …

research product

Temperature dependence of single chain properties in a binary polymer blend

The temperature dependence of the correlation length of composition fluctuations and single chain statics and dynamics is studied in a symmetric, binary polymer blend. Our Monte Carlo simulation reveals a pronounced shrinking of the chain in the minority phase at low temperatures. However, only a weak temperature dependence of the single chain properties is found above criticality. Especially there is only a weak coupling between the correlation length of composition fluctuations and the relaxation of the internal chain structure. The coherent dynamic structure factor does not show any signs of a spatial restricted motion for our chain length N = 16, which is far below the entanglement leng…

research product

How Well Can Coarse-Grained Models of Real Polymers Describe Their Structure? The Case of Polybutadiene

Coarse-graining of chemical structure of macromolecules in the melt is investigated using extensive molecular dynamics simulation data which are based on a united atom force-field model of polybutadiene. Systematically increasing the number, n, of the united atoms approximated by an effective coarse-grained monomer, we study the influence of degree of coarse-graining on the structure functions such as the segment-segment intermolecular and intramolecular correlation functions. These results are compared to Monte Carlo simulations of the corresponding coarse-grained bead-spring model and Chen-Kreglewski potential for chain molecules. In contrast to the atomistic chemically realistic model of…

research product

Equation of State for Macromolecules of Variable Flexibility in Good Solvents: A Comparison of Techniques for Monte Carlo Simulations of Lattice Models

The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the repulsive wall method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g. gravitation-like) field and infers, via a local …

research product

Model-independent DWBA-analysis of inelastic electron scattering data

research product

How does the pattern of grafting points influence the structure of one-component and mixed polymer brushes?

Using Monte Carlo simulations of a coarse-grained bead-spring model we study the lateral structure formation of one-component polymer brushes in a bad solvent and of a mixed polymer brush upon increasing the incompatibility of the two species. We compare the morphology of the brush with a regular distribution of grafting points and with a random arrangement. Density or composition fluctuations of the grafting points enhance the formation of irregular structures but randomness prevents the formation of long-range order. Even small fluctuations of the grafting points are sufficient to pin the lateral structures of the brush.

research product

Corner wetting in the two-dimensional Ising model: Monte Carlo results

Square L ? L (L = 24?128) Ising lattices with nearest neighbour ferromagnetic exchange are considered using free boundary conditions at which boundary magnetic fields ? h are applied, i.e., at the two boundary rows ending at the lower left corner a field +h acts, while at the two boundary rows ending at the upper right corner a field ?h acts. For temperatures T less than the critical temperature Tc of the bulk, this boundary condition leads to the formation of two domains with opposite orientations of the magnetization direction, separated by an interface which for T larger than the filling transition temperature Tf (h) runs from the upper left corner to the lower right corner, while for T …

research product

Field theoretic study of bilayer membrane fusion: I. Hemifusion mechanism

Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate limiting process. The barrier which is relevant is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by…

research product

Nanostructured Polymer Brushes With Reversibly Changing Properties

AbstractWe investigated the interplay between different mechanisms of the lateral and vertical segregation in the synthesized via “grafting from” approach symmetric A/B (where A and B are poly(styrene-co-2,3,4,5,6-pentafluorostyrene) and poly(methylmethacrylate), respectively) polymer brushes upon exposure to different solvents. We used X-ray photoemission electron spectroscopy and microscopy (X-PEEM), AFM, water contact angle measurements, and oxygen plasma etching to study morphology of the brushes. The ripple morphology after toluene (nonselective solvent) revealed elongated lamellar-like domains of A and B polymers alternating across the surface. The dimple-A morphology consisting of ro…

research product

Molecular Simulation of Polymer Melts and Blends: Methods, Phase Behavior, Interfaces, and Surfaces

research product

Monte Carlo simulations of phase transitions of systems in nanoscopic confinement

Abstract When simple or complex fluids are confined to ultrathin films or channels or other cavities of nanoscopic linear dimensions, the interplay of finite size and surface controls the phase behavior, and may lead to phase transitions rather different from the corresponding phenomena in the bulk. Monte Carlo simulation is a very suitable tool to clarify the complex behavior of such systems, since the boundary conditions providing the confinement can be controlled and arbitrarily varied, and detailed structural information on the inhomogeneous states of the considered systems is available. Examples used to illustrate these concepts include simple Ising models in pores and double-pyramid-s…

research product

Phase Diagram of Random Copolymer Melts:  A Computer Simulation Study

We investigate the phase behavior of random copolymer melts via large-scale Monte Carlo simulations. The AB multiblock copolymers have, on average, symmetric composition and are characterized by a ...

research product

Intra- and Interchain Correlations in Semidilute Polymer Solutions:  Monte Carlo Simulations and Renormalization Group Results

We investigate the intra- and intermolecular correlations in semidilute polymer solutions by large-scale computer simulations and renormalization group calculations. In the framework of the bond fluctuation model we study polymers with chain lengths up to N = 2048 monomers and determine the intermolecular pair correlation function, the coherent scattering intensity, and its distinct part at all length scales. The simulations are compared quantitatively to renormalization group calculations of the universal crossover scaling function. Special attention is paid to length scales smaller than the density screening length ξ, where the distinct part of the scattering function in the simulations i…

research product

The droplet evaporation/condensation transition in a finite volume

A fluid in the NVT ensemble at T less than the critical temperature T_c and rho = N/V somewhat in excess of rho_coex (density of the saturated gas in the gas-liquid transition) is considered. For V-&gt;infinity, a macroscopic liquid droplet coexists with surrounding saturated gas according to the lever rule. For finite V, droplets can only exist if they exceed a minimum size. A (rounded) first order transition of the system occurs when the droplet evaporates into the supersaturated gas.Simulation evidence for this transition is given for a Lennard-Jones model and interpreted by a phenomenological theory. At the transition, the chemical potential difference mu_t-mu_coex scales like L^(-d/(d+…

research product

Phase diagram of polymer blends in confined geometry

Within self-consistent field theory we study the phase behavior of a symmetrical binary AB polymer blend confined into a thin film. The film surfaces interact with the monomers via short range potentials. One surface attracts the A component and the corresponding smei-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surfaces fields to the interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exh…

research product

Monte Carlo Simulation of a Homopolymer−Copolymer Mixture Interacting with a Surface: Bulk versus Surface Micelles and Brush Formation

Using Monte Carlo simulations of the bond fluctuation model, we study the formation of micelles in a confined mixture of asymmetric AB-diblock copolymers and homopolymers. The composition of the sphere-forming AB-diblock copolymers is fA = 1/8. The mixture is confined into a thin film. The film surfaces attract the minority component of the diblock with strength, eW. To efficiently sample the micelle size distribution and establish equilibrium between the surface and the bulk, we work in the semigrandcanonical ensemble, i.e. at fixed density and fixed chemical potential difference between the two types of chains, choosing a large incompatibility χN ≃ 100 (strong segregation regime). The com…

research product

Topological effects in ring polymers. II. Influence of persistence length

The interplay of topological constraints and persistence length of ring polymers in their own melt is investigated by means of dynamical Monte Carlo simulations of a three dimensional lattice model. We ask if the results are consistent with an asymptotically regime where the rings behave like (compact) {\em lattice animals} in a self-consistent network of topological constraints imposed by neighbouring rings. Tuning the persistence length provides an efficient route to increase the ring overlap required for this mean-field picture to hold: The {\em effective} Flory exponent for the ring size decreases down to $\nu \stackrel{<}{\sim} 1/3$ with increasing persistence length. Evidence is provi…

research product

Polymer mixtures in confined geometries: Model systems to explore phase transitions

While binary (A,B) symmetric polymer mixtures ind = 3 dimensions have an unmixing critical point that belongs to the 3d Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for whichT; c ∝N; 5/8 (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, d = 2). When the walls of the thin film are not neutral, but preferentially attract one …

research product

Single chain structure in thin polymer films: Corrections to Flory's and Silberberg's hypotheses

Conformational properties of polymer melts confined between two hard structureless walls are investigated by Monte Carlo simulation of the bond-fluctuation model. Parallel and perpendicular components of chain extension, bond-bond correlation function and structure factor are computed and compared with recent theoretical approaches attempting to go beyond Flory's and Silberberg's hypotheses. We demonstrate that for ultrathin films where the thickness, $H$, is smaller than the excluded volume screening length (blob size), $\xi$, the chain size parallel to the walls diverges logarithmically, $R^2/2N \approx b^2 + c \log(N)$ with $c \sim 1/H$. The corresponding bond-bond correlation function d…

research product

Adsorption Transition of a Polymer Chain at a Weakly Attractive Surface: Monte Carlo Simulation of Off-Lattice Models

A bead-spring model of a polymer chain with one end attached to a wall is studied by Monte Carlo simulations for chain lengths 16 ≤ N ≤ 256. Two types of adsorption potentials, 9-3 and 10-4 Lennard-Jones (LJ) potentials, between the effective monomers and the wall are assumed. For both cases the adsorption transition where the chain changes its asymptotic statistical properties from a three-dimensional to a two-dimensional configuration is located using a scaling analysis. It is shown that the crossover exponent φ = 0.50 ± 0.02 is the same for both LJ potentials. This value is compatible with recent theoretical predictions and simulation results for lattice models with short-range wall pote…

research product

Photonic crystals based on two-layer opaline heterostructures

AbstractOptical properties of several heterostructures representing two-layer opaline photonic crystals have been examined. Two separate stop-bands have been observed both in transmission and emission spectra. The effect of the interface disorder on the optical spectra was not observed, probably, due to the insufficient degree of order of the opaline layers.

research product

The generalizability of Older Adult Self-Report (OASR) syndromes of psychopathology across 20 societies

Contains fulltext : 217516.pdf (Publisher’s version ) (Closed access) Objectives: As the world population ages, psychiatrists will increasingly need instruments for measuring constructs of psychopathology that are generalizable to diverse elders. The study tested whether syndromes of co-occurring problems derived from self-ratings of psychopathology by US elders would fit self-ratings by elders in 19 other societies. Methods/design: The Older Adult Self-Report (OASR) was completed by 12 826 adults who were 60 to 102 years old in 19 societies from North and South America, Asia, and Eastern, Northern, Southern, and Western Europe, plus the United States. Individual and multigroup confirmatory…

research product

How Do Droplets Depend on the System Size? Droplet Condensation and Nucleation in Small Simulation Cells

Using large scale grandcanonical Monte Carlo simulations in junction with a multicanonical reweighting scheme we investigate the liquid-vapor transition of a Lennard—Jones fluid. Particular attention is focused on the free energy of droplets and the transition between different system configurations as the system tunnels between the vapor and the liquid state as a function of system size. The results highlight the finite size dependence of droplet properties in the canonical ensemble and free energy barriers along the path from the vapor to the liquid in the grandcanonical ensemble.

research product

Spinodal Decomposition in Binary Polymer Blends: Monte Carlo Simulations and Dynamic Mean Field Theory

Using large scale computer simulations we have investigated the interplay between single chain dynamics and the kinetics of phase separation in a symmetric binary polymer blend. In the framework of a coarse grained lattice model — the bond fluctuation model on a three dimensional lattice — we monitor the growth of concentration fluctuations after a quench from the one phase region into the miscibility gap. Chains of 64 effective segments are simulated in a cell of linear dimension L = 160, i.e., each simulation box contains 256 000 particles. The growth rate of composition fluctuations is averaged over 64 realizations of the temperature quench.

research product

Junction Dynamics in Telechelic Hydrogen Bonded Polyisobutylene Networks

4-Urazoylbenzoic acid groups are attached to the chain ends of polyisobutylene. The cooperative assembling process of these polar groups is studied by DSC and dielectric and dynamic mechanical spectroscopy. The melting of the ordered clusters occurs in the temperature range 380-390 K. Distortions within the U4A clusters (Σ process) are monitored below the melting temperature T m with dielectric spectroscopy. On a larger length scale, these distortions also lead to stress relaxation which can be probed by dynamic mechanical measurements. Near T m , the relaxation ofU4A multiplets (α* relaxation) is detected with dielectric spectroscopy. In this temperature range, dynamic mechanical measureme…

research product

Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior

In this paper we investigate the phase diagram of pure dipolar substances and their mixtures with short alkanes, using grand canonical Monte Carlo simulations of simplified coarse-grained models. Recently, an efficient coarse-grained model for simple quadrupolar molecules, based on a Lennard-Jones (LJ) interaction plus a spherically averaged quadrupolar potential, has been shown to be successful in predicting single-component and mixture phase diagrams. Motivated by these results, we investigate the phase diagrams of simple dipolar molecules (and their mixtures with alkanes) using a spherically averaged potential. First, we test the model on pure components. A generalized (state-dependent) …

research product

Phase transitions in nanosystems caused by interface motion: the Ising bipyramid with competing surface fields.

The phase behavior of a large but finite Ising ferromagnet in the presence of competing surface magnetic fields +/- H_s is studied by Monte Carlo simulations and by phenomenological theory. Specifically, the geometry of a double pyramid of height 2L is considered, such that the surface field is positive on the four upper triangular surfaces of the bi-pyramid and negative on the lower ones. It is shown that the total spontaneous magnetization vanishes (for L -&gt; infinity) at the temperature T_f(H), related to the "filling transition" of a semi-infinite pyramid, which can be well below the critical temperature of the bulk. The discontinuous vanishing of the magnetization is accompanied by a…

research product

Symmetric diblock copolymers confined into thin films: A Monte Carlo investigation on the CRAY T3E

We present the results of large scale computer simulations targeted at investigating the phase stability and the structure of symmetric AB diblock copolymers in thin films. The connectivity of the two different monomer species A and B in the diblock copolymer prevents macrophage separation and the molecules assemble into A-rich and B-rich domains on the scale of the molecule’s extension. This large length scale of the ordering phenomena makes these polymeric systems a promising candidate for revealing the universal features of self-assembling in amphiphilic molecules. However, the widely spread length and time scales impart protracted long relaxation times to the systems and pose a challeng…

research product

Long Range Bond-Bond Correlations in Dense Polymer Solutions

The scaling of the bond-bond correlation function $C(s)$ along linear polymer chains is investigated with respect to the curvilinear distance, $s$, along the flexible chain and the monomer density, $\rho$, via Monte Carlo and molecular dynamics simulations. % Surprisingly, the correlations in dense three dimensional solutions are found to decay with a power law $C(s) \sim s^{-\omega}$ with $\omega=3/2$ and the exponential behavior commonly assumed is clearly ruled out for long chains. % In semidilute solutions, the density dependent scaling of $C(s) \approx g^{-\omega_0} (s/g)^{-\omega}$ with $\omega_0=2-2\nu=0.824$ ($\nu=0.588$ being Flory's exponent) is set by the number of monomers $g(\r…

research product

Coarse-grained models and collective phenomena in membranes: Computer simulation of membrane fusion

We discuss the role coarse-grained models play in in- vestigating collective phenomena in bilayer membranes and place them in the context of alternative approaches. By reducing the de- grees of freedom and applying simple effective potentials, coarse- grained models can address the large time scales and length scales of collective phenomena in mem- branes. Although the mapping from a coarse-grained model onto chemi- cally realistic models is a challenge, such models provide a direct view on the phenomena that occur on the length scales of a few tens of nano- meters. Their relevance is exempli- ied by the study of fusion of model membranes. ' 2003 Wiley Periodicals,

research product

Spinodal decomposition of polymer solutions: A parallelized molecular dynamics simulation

In simulations of phase separation kinetics, large length and time scales are involved due to the mesoscopic size of the polymer coils, and the structure formation on still larger scales of length and time. We apply a coarse-grained model of hexadecane dissolved in supercritical carbon dioxide, for which in previous work the equilibrium phase behavior has been established by Monte Carlo methods. Using parallelized simulations on a multiprocessor supercomputer, large scale molecular dynamics simulations of phase separation following pressure jumps are presented for systems containing $N=435\phantom{\rule{0.2em}{0ex}}136$ coarse-grained particles, which correspond to several millions of atoms…

research product

Conformational Properties of Semiflexible Chains at Nematic Ordering Transitions in Thin Films: A Monte Carlo Simulation

Athermal solutions of semiflexible macromolecules with excluded volume interactions and with varying concentration (dilute, semidilute, and concentrated solutions) in a film of thickness D between ...

research product

Monte Carlo simulation of block copolymers

Monte Carlo simulations deal with crudely simplified but well-defined models and have the advantage that they treat the statistical thermodynamics of the considered model exactly (apart from statistical errors and problems due to finite size effects). Therefore, these simulations are well suited to test various approximate theories of block copolymer ordering, e.g. the self-consistent field theory. Recent examples of this approach include the study of block copolymer ordering at melt surfaces and confinement effects in thin films, adsorption of block copolymers at interfaces of unmixed homopolymer blends, the phase behavior of ternary mixtures of two homopolymers and their block copolymer, …

research product

Critical Wetting and Interface Localization—Delocalization Transition in a Double Wedge

Using Monte Carlo simulations and finite-size scaling methods we study “wetting” in Ising systems in a L x L x L y pore with quadratic cross section. Antisymmetric surface fields H s act on the free L x L y surfaces of the opposing wedges, and periodic boundary conditions are applied along the y-direction. Our results represent the first simulational observation of fluctuation effects in three dimensional wetting phenomena and corroborate recent predictions on wedge filling. In the limit L → ∞ L y /L 3 = const the system exhibits a new type of phase transition, which is the analog of the “filling transition” that occurs in a single wedge. It is characterized by critical exponents α = 3/4, β…

research product

Properties of the interface in the confined Ising magnet with competing surface fields

Abstract A two-dimensional magnetic Ising system confined in an L × D geometry ( L ⪡ D ) in the presence of competing magnetic fields (h) acting at opposite walls along the D -direction, exhibits an interface between domains of different orientation that run parallel to the walls. In the limit L → ∞ , this interface undergoes a wetting transition that occurs at the critical curve T w ( h ) , so that for T T w ( h ) such an interface is bound to the walls, while for T w ( h ) ⩽ T T cb the interface is freely fluctuating around the center of the film, where T cb is the bulk critical temperature. By considering both short- and long-range magnetic fields acting at the walls, we study the diverg…

research product

Chain Conformations and Phase Behavior in Confined Polymer Blends

We investigate the chain conformations and phase separation in binary polymer blends. Using large scale semi-grandcanonical Monte Carlo simulations and finite size scaling, we investigate the molecular extension and the intermolecular paircorrelation function in thin films with hard, non-preferentially adsorbing surfaces. The interplay between chain conformations, demixing and the validity of mean field theory is investigated for a large variation of chain lengths 16 ≤ N ≤ 512. Three regimes of film thickness D can be distinguished: (i) For film thicknesses much larger than the unperturbed chain extension R e, bulk behavior is observed, i.e., the critical temperature of demixing T c increas…

research product

Anomalous scaling of the critical temperature of unmixing with chain length for two-dimensional polymer blends

The thermodynamics, structure and the chain configurations of symmetrical polymer mixtures confined into ultrathin films are studied by Monte Carlo simulations of the bond fluctuation model. It is shown that the Flory-Huggins–type scaling of the critical temperature (Tc ~ N) with chain length N in the bulk is replaced by a weaker increase, Tc ~ N1/2, in an ultrathin film, and this is interpreted in terms of geometric arguments. The pair-correlation function g(r) of monomers from different chains exhibits a pronounced correlation hole, and the density of intermolecular contacts zc decreases with N as zc ~ N−1/2.

research product

PHASE EQUILIBRIA IN THIN POLYMER FILMS

Within self-consistent field theory and Monte Carlo simulations the phase behavior of a symmetrical binary AB polymer blend confined into a thin film is studied. The film surfaces interact with the monomers via short ranged potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter…

research product

COMPUTER SIMULATION OF PROFILES OF INTERFACES BETWEEN COEXISTING PHASES: DO WE UNDERSTAND THEIR FINITE SIZE EFFECTS?

Interfaces between coexisting phases are very common in condensed matter physics, and thus many simulations attempt to characterize their properties, in particular, the interfacial tension and the interfacial profile. However, while theory usually deals with the "intrinsic profile", the latter is not a straightforward output of a simulation: The actual profile (observed in simulations and/or experiments!) is broadened by lateral fluctuations. Therefore, in the usual simulation geometry of L × L × L (in three dimensions), where one chooses suitable boundary conditions to stabilize one or two interfaces of (minimal) area L × L, the profile (and in particular the interfacial width) depends on…

research product

Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach

The perturbed-chain statistical associating fluid theory (PC-SAFT) is studied for a wide range of temperature, T, pressure, p, and (effective) chain length, m, to establish the generic phase diagram of polymers according to this theory. In addition to the expected gas-liquid coexistence, two additional phase separations are found, termed "gas-gas" equilibrium (at very low densities) and "liquid-liquid" equilibrium (at densities where the system is expected to be solid already). These phase separations imply that in one-component polymer systems three critical points occur, as well as equilibria of three fluid phases at triple points. However, Monte Carlo simulations of the corresponding sys…

research product

Fusion of biological membranes

The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent field theory is applied to examine the free energy barriers in the different scenarios.

research product

Formation of Micelles in Homopolymer-Copolymer Mixtures:  Quantitative Comparison between Simulations of Long Chains and Self-Consistent Field Calculations

Using Monte Carlo simulations of the bond fluctuation model and self-consistent field calculations, we study the formation of micelles in a mixture of homopolymers and asymmetric AB-diblock copolymers with composition, fA = 1/8. Both types of molecules are fully flexible and have identical length. We work in the semi-grand-canonical ensemble, i.e., we fix the monomer density and incompatibility, χN ≃ 100 (strong segregation regime), and control the composition of the mixture via the exchange chemical potential, δμ ≡ μAB − μB between the copolymers and homopolymers. The Monte Carlo simulation comprises moves that allow homopolymers to mutate into AB-diblock copolymers and vice versa. These m…

research product

Monte Carlo simulation of polymer mixtures: recent progress

research product

‘Intrinsic’ profiles and capillary waves at interfaces between coexisting phases in polymer blends

Abstract Lateral fluctuations in the local position of the center of the interface between coexisting phases in unmixed polymer blends lead to a broadening of interfacial widths; comparing self-consistent field predictions for the ‘intrinsic’ profile to simulations (or experiments), this ‘capillary wave’ broadening needs consideration. This problem has been studied by extensive Monte Carlo simulations of the bond fluctuation model for symmetrical polymer mixtures, both for free interfaces (between bulk phases) and for confined interfaces (in thin films between parallel walls). While the capillary wave predictions at large length scales are confirmed, the extraction of the ‘intrinsic’ profil…

research product

Suppression of capillary wave broadening of interfaces in binary alloys due to elastic interactions.

By Monte Carlo simulations in the constant-temperature--constant-pressure ensemble a planar interface between unmixed A-rich and B-rich phases of a binary (A, B) alloy on a compressible diamond lattice is studied. No significant capillary wave broadening of the concentration profile across the interface is observed, unlike lattice models of incompressible mixtures and fluids. The distortion of the lattice structure across the interface is studied.

research product

Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations

Using Monte Carlo simulations and self-consistent field (SCF) theory we study the surface and interface properties of a coarse grained off-lattice model. In the simulations we employ the grand canonical ensemble together with a reweighting scheme in order to measure surface and interface free energies and discuss various methods for accurately locating the wetting transition. In the SCF theory, we use a partial enumeration scheme to incorporate single-chain properties on all length scales and use a weighted density functional for the excess free energy. The results of various forms of the density functional are compared quantitatively to the simulation results. For the theory to be accurate…

research product

Monte Carlo simulations of Ising models and polymer blends in double wedge geometry: Evidence for novel types of critical phenomena

Abstract Two-phase coexistence in systems with free surfaces is enforced by boundary fields requiring the presence of an interface. Varying the temperature or the surface field, one can observe new types of phase transitions where the interface essentially disappears (it becomes bound to a wall or a wedge or a corner of the system). These transitions are simulated with Monte Carlo for Ising ferromagnets and polymer blends, applying finite size scaling analysis. Anisotropic critical fluctuations may occur, and in the limit where the system becomes macroscopically large in all three directions the order parameter vanishes discontinuously (either because its exponent β = 0 , or its critical am…

research product

Study of the confined Ising magnet with long-range competing boundary fields

We present extensive Monte Carlo simulations of the Ising film confined in an L × M geometry () in the presence of long-range competing magnetic fields h(n) = h1/n3(n = 1,2,...,L) which are applied at opposite walls along the M-direction. Due to the fields, an interface between domains of different orientations that runs parallel to the walls forms and can be located close to one of the two surfaces or fluctuate in the centre of the film (localization–delocalization transition). This transition is the precursor of the wetting phase transition that occurs in the limit of infinite film thickness () at the critical curve Tw(h1). For T<Tw(h1) (T≥Tw(h1)) such an interface is bound to (unbound fr…

research product

The interplay between wetting and phase behaviour in binary polymer films and wedges: Monte Carlo simulations and mean field calculations

By confining a binary mixture, one can profoundly alter its miscibility behaviour. The qualitative features of miscibility in confined geometry are rather universal and are shared by polymer mixtures as well as small molecules, but the unmixing transition in the bulk and the wetting transition are typically well separated in polymer blends. We study the interplay between wetting and miscibility of a symmetric polymer mixture via large scale Monte Carlo simulations in the framework of the bond fluctuation model and via numerical self-consistent field calculations. The film surfaces interact with the monomers via short-ranged potentials, and the wetting transition of the semi-infinite system …

research product

Calculation of the Phase Behavior of Lipids

The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.

research product

Wetting of a short chain liquid on a brush: First-order and critical wetting transitions

We investigate the wetting behaviour of short chains on a surface covered with a brush of end-grafted chains of the same architecture by a combination of self-consistent field calculations and liquid-state theory. The surface interacts with the monomers via (non-retarded) van der Waals interactions of strength A. At low grafting densities, we find first-order wetting transitions. The value of the effective Hamaker constant Awet > 0, at which the transition occurs, decreases and the strength of the first-order transition becomes weaker as we increase the grafting density. In an intermediate range of grafting densities, we encounter second-order wetting transitions at a vanishing Hamaker cons…

research product

First-order interface localization-delocalization transition in thin Ising films using Wang-Landau sampling

Using extensive Monte Carlo simulations, we study the interface localization- delocalization transition of a thin Ising film with antisymmetric competing walls for a set of parameters where the transition is strongly first-order. This is achieved by estimating the density of states (DOS) of the model by means of Wang-Landau sampling (WLS) in the space of energy, using both, single-spin-flip as well as N-fold way updates. From the DOS we calculate canonical averages related to the configurational energy, like the internal energy, the specific heat, as well as the free energy and the entropy. By sampling microcanonical averages during simulations we also compute thermodynamic quantities relat…

research product

Phase transitions in polymeric systems: A challenge for Monte Carlo simulation

Polymers are more difficult to simulate than small molecule systems, due to the large size of random polymer coils (and their slow relaxation, that is observed when dynamic simulation algorithms are used). However, variation of the chain length N of a flexible polymer chain provides a very useful additional control parameter, allowing stringent tests of theories, and new physical phenomena may emerge. As an example of these concepts, critical phenomena in polymer mixtures are described. It is shown that unmixing of symmetrical mixtures ( N A = N B = N ) is described by an equation for the critical temperature T c ( N ) = aN + b rather than T c ∝ N as claimed by some theories. While for fini…

research product

Phase Behavior of Polymer-Containing Systems: Recent Advances Through Computer Simulation

research product

Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic $L\ifmmode\times\else\texttimes\fi{}L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ Ising lattices with nearest neighbor ferromagnetic exchange and four free $L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ surfaces, at which antisymmetric surface fields $\ifmmode\pm\else\textpm\fi{}{H}_{s}$ act, are studied for a wide range of linear dimensions $(4l~Ll~320,30l~{L}_{y}l~1000),$ in an attempt to clarify finite size effects on the wedge filling transition in this ``double-wedge'' geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a li…

research product

Study of the dynamic growth of wetting layers in the confined Ising model with competing surface fields

A two-dimensional magnetic Ising system confined in an L × D geometry () in the presence of competing magnetic fields (h) acting at opposite walls along the D-direction exhibits an interface between domains of different orientation that runs parallel to the walls. In the limit of infinite film thickness () this interface undergoes a wetting transition that occurs at the critical curve Tw(h), so that for T<Tw(h) such an interface is bound to the walls, while for Tw(h)≤T≤Tcb the interface is freely fluctuating around the centre of the film, where Tcb is the bulk critical temperature. Starting from a monodomain structure with the interface bound to one wall, we study the onset of the interface…

research product

Static properties of end-tethered polymers in good solution: A comparison between different models

We present a comparison between results, obtained from different simulation models, for the static properties of end-tethered polymer layers in good solvent. Our analysis includes data from two previous studies--the bond fluctuation model of Wittmer et al. [J. Chem. Phys. 101, 4379 (1994)] and the off-lattice bead-spring model of Grest and Murat [Macromolecules 26, 3108 (1993)]. Additionally, we explore the properties of a similar off-lattice model simulated close to the Theta temperature. We show that the data for the bond fluctuation and the Grest-Murat model can be analyzed in terms of scaling theory because chains are swollen inside the Pincus blob. In the vicinity of the Theta point th…

research product

Single-chain conformations in symmetric binary polymer blends: Quantitative comparison between self-consistent field calculations and Monte Carlo simulations

Single-chain properties in a symmetric binary polymer blend are studied by self-consistent field calculations and Monte Carlo simulations. Within the self-consistent field scheme, the statistical mechanics of a cluster of neighboring polymers is solved. Interactions among the polymers of a cluster and composition fluctuations within a cluster are incorporated exactly, a mean field approximation is invoked for intercluster interactions and long-range fluctuations. The results are compared to large scale Monte Carlo simulations for a broad range of chain lengths. While we find nearly quantitative agreement for single chain propertiese.g., the reduction of the chain dimensions of the minority …

research product