0000000000020053

AUTHOR

Luis G. Macdowell

0000-0003-1900-1241

showing 7 related works from this author

Towards the Quantitative Prediction of the Phase Behavior of Polymer Solutions by Computer Simulation

2009

The phase diagram of polymer solutions (cf. e.g. alkanes dissolved in supercritical carbon dioxide) is complicated, since there are four control parameters (temperature, pressure, monomer volume fraction, chain length of the polymer) and due to the interplay of liquid-vapor transitions and fluid-fluid unmixing. As a result I very intricate phase diagram topologies can result. An attempt to develop coarse-1 grained models that can deal with this task will be described. As usual, the polymers I will be modelled as off-lattice bead-spring chains, where several chemical monomers I are integrated into one effective bond, torsional degrees of freedom being dis-I regarded. But also a coarse-graine…

Quantitative Biology::BiomoleculesEquation of statePolymers and PlasticsChemistryPoint particleOrganic ChemistryMonte Carlo methodDegrees of freedom (physics and chemistry)Ab initioCondensed Matter PhysicsCondensed Matter::Soft Condensed MatterPhase (matter)Materials ChemistryStatistical physicsPhysics::Chemical PhysicsPerturbation theoryPhase diagramMacromolecular Symposia
researchProduct

Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.

2008

Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The mode…

BinodalSurface tensionReduced propertiesLennard-Jones potentialChemistryVapor pressureMoment (physics)Monte Carlo methodGeneral Physics and AstronomyThermodynamicsPhysical and Theoretical ChemistryPerturbation theoryThe Journal of chemical physics
researchProduct

How do droplets on a surface depend on the system size?

2002

Abstract We investigate the thermodynamics of inhomogeneous polymer melts in the framework of a coarse grained off-lattice model. Properties of the liquid–vapour interface and the packing of the melt in contact with an attractive wall are considered. We employ Monte Carlo simulations in the grand canonical ensemble to determine excess free energies, the wetting temperature and the pre-wetting line, as well as the pre-wetting critical point. Having determined the wetting properties and the phase diagram of the model polymer, we perform canonical Monte Carlo simulations of small droplets on a surface. This allows us to study the dependence of droplet size on the wetting properties. It is foun…

Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsContact angleSurface tensionGrand canonical ensembleColloid and Surface ChemistryWetting transitionChemistryCritical point (thermodynamics)Monte Carlo methodThermodynamicsWettingPhase diagram
researchProduct

The droplet evaporation/condensation transition in a finite volume

2003

A fluid in the NVT ensemble at T less than the critical temperature T_c and rho = N/V somewhat in excess of rho_coex (density of the saturated gas in the gas-liquid transition) is considered. For V->infinity, a macroscopic liquid droplet coexists with surrounding saturated gas according to the lever rule. For finite V, droplets can only exist if they exceed a minimum size. A (rounded) first order transition of the system occurs when the droplet evaporates into the supersaturated gas.Simulation evidence for this transition is given for a Lennard-Jones model and interpreted by a phenomenological theory. At the transition, the chemical potential difference mu_t-mu_coex scales like L^(-d/(d+…

BinodalPhysicsSupersaturationFinite volume methodStatistical Mechanics (cond-mat.stat-mech)CondensationThermodynamicsFOS: Physical sciencesStatistical mechanicsCondensed Matter - Soft Condensed MatterPhysics::Fluid DynamicsVolume (thermodynamics)Vapor–liquid equilibriumSoft Condensed Matter (cond-mat.soft)Lever ruleCondensed Matter - Statistical Mechanics
researchProduct

Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior

2009

In this paper we investigate the phase diagram of pure dipolar substances and their mixtures with short alkanes, using grand canonical Monte Carlo simulations of simplified coarse-grained models. Recently, an efficient coarse-grained model for simple quadrupolar molecules, based on a Lennard-Jones (LJ) interaction plus a spherically averaged quadrupolar potential, has been shown to be successful in predicting single-component and mixture phase diagrams. Motivated by these results, we investigate the phase diagrams of simple dipolar molecules (and their mixtures with alkanes) using a spherically averaged potential. First, we test the model on pure components. A generalized (state-dependent) …

HydrogenChemistryMonte Carlo methodGeneral Physics and Astronomychemistry.chemical_elementThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences3. Good healthPentanechemistry.chemical_compoundCritical point (thermodynamics)0103 physical sciencesGranularityPhysics::Chemical PhysicsPhysical and Theoretical ChemistryNonane010306 general physics0210 nano-technologyPhase diagramAnsatzPhysical Chemistry Chemical Physics
researchProduct

Wetting of polymer liquids: Monte Carlo simulations and self-consistent field calculations

2003

Using Monte Carlo simulations and self-consistent field (SCF) theory we study the surface and interface properties of a coarse grained off-lattice model. In the simulations we employ the grand canonical ensemble together with a reweighting scheme in order to measure surface and interface free energies and discuss various methods for accurately locating the wetting transition. In the SCF theory, we use a partial enumeration scheme to incorporate single-chain properties on all length scales and use a weighted density functional for the excess free energy. The results of various forms of the density functional are compared quantitatively to the simulation results. For the theory to be accurate…

Mesoscopic physicsChemistryMonte Carlo methodengineering.materialCondensed Matter PhysicsPolymer brushCondensed Matter::Soft Condensed MatterGrand canonical ensembleCoatingWetting transitionChemical physicsengineeringGeneral Materials ScienceStatistical physicsWettingEnergy functional
researchProduct

Wetting of a short chain liquid on a brush: First-order and critical wetting transitions

2001

We investigate the wetting behaviour of short chains on a surface covered with a brush of end-grafted chains of the same architecture by a combination of self-consistent field calculations and liquid-state theory. The surface interacts with the monomers via (non-retarded) van der Waals interactions of strength A. At low grafting densities, we find first-order wetting transitions. The value of the effective Hamaker constant Awet > 0, at which the transition occurs, decreases and the strength of the first-order transition becomes weaker as we increase the grafting density. In an intermediate range of grafting densities, we encounter second-order wetting transitions at a vanishing Hamaker cons…

Materials scienceHamaker constantdigestive oral and skin physiologyGeneral Physics and AstronomyThermodynamicssymbols.namesakeGrand canonical ensembleWetting transitionTricritical pointChemical physicsCritical point (thermodynamics)symbolsWettingvan der Waals forcePhase diagram
researchProduct