Search results for "ta111"

showing 10 items of 251 documents

$n$-harmonic coordinates and the regularity of conformal mappings

2014

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r > 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 < p < \infty$ on any Riemannian manifold.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsSmoothness (probability theory)GeneralizationGeneral MathematicsCoordinate systemta111conformal mappingsConformal map53A30 (Primary) 35J60 35B65 (Secondary)Riemannian manifoldMathematics - Analysis of PDEsDifferential Geometry (math.DG)Metric (mathematics)FOS: MathematicsDiffeomorphismMathematics::Differential GeometryMathematicsAnalysis of PDEs (math.AP)
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

A note on Sobolev isometric immersions below W2,2 regularity

2017

Abstract This paper aims to investigate the Hessian of second order Sobolev isometric immersions below the natural W 2 , 2 setting. We show that the Hessian of each coordinate function of a W 2 , p , p 2 , isometric immersion satisfies a low rank property in the almost everywhere sense, in particular, its Gaussian curvature vanishes almost everywhere. Meanwhile, we provide an example of a W 2 , p , p 2 , isometric immersion from a bounded domain of R 2 into R 3 that has multiple singularities.

Hessian matrixPure mathematicsIsometric exercise01 natural sciencessymbols.namesake0103 physical sciencesGaussian curvatureImmersion (mathematics)Almost everywhereisometric immersions0101 mathematicsMathematics010102 general mathematicsMathematical analysista111Hessian determinantSobolev spaceComputational Theory and MathematicsBounded functionsymbolsGravitational singularityMathematics::Differential Geometry010307 mathematical physicsGeometry and Topologydegenerate Monge–Ampère equationAnalysisDifferential Geometry and its Applications
researchProduct

Boundary Behavior of Harmonic Functions on Gromov Hyperbolic Manifolds

2013

Hyperbolic groupGeneral MathematicsHyperbolic functionMathematical analysista111Systolic geometryHyperbolic manifoldBoundary (topology)Relatively hyperbolic groupCalderón–Stein theoremHarmonic functionGromov hyperbolic manifoldsharmonic functionsHyperbolic equilibrium pointMathematicsInternational Mathematics Research Notices
researchProduct

Isoperimetric inequality from the poisson equation via curvature

2012

In this paper, we establish an isoperimetric inequality in a metric measure space via the Poisson equation. Let (X,d,μ) be a complete, pathwise connected metric space with locally Ahlfors Q-regular measure, where Q > 1, that supports a local L2-Poincare inequality. We show that, for the Poisson equation Δu = g, if the local L∞-norm of the gradient Du can be bounded by the Lorentz norm LQ,1 of g, then we obtain an isoperimetric inequality and a Sobolev inequality in (X,d,μ) with optimal exponents. By assuming a suitable curvature lower bound, we establish such optimal bounds on . © 2011 Wiley Periodicals, Inc.

Hölder's inequalityApplied MathematicsGeneral Mathematicsta111Mathematical analysisPoincaré inequalityIsoperimetric dimensionMinkowski inequalitySobolev inequalityMetric spacesymbols.namesakesymbolsLog sum inequalityIsoperimetric inequalityMathematicsCommunications on Pure and Applied Mathematics
researchProduct

Intrinsic Hardy–Orlicz spaces of conformal mappings

2014

We define a new type of Hardy-Orlicz spaces of conformal mappings on the unit disk where in place of the value |f(x)| we consider the intrinsic path distance between f(x) and f(0) in the image domain. We show that if the Orlicz function is doubling then these two spaces are actually the same, and we give an example when the intrinsic Hardy-Orlicz space is strictly smaller.

Image domainPure mathematicsMathematics::Functional AnalysisMathematics - Complex VariablesmathematicsGeneral Mathematicsta111Mathematics::Classical Analysis and ODEsconforma mappingsConformal mapFunction (mathematics)Type (model theory)Space (mathematics)Path distanceUnit diskHardy–Orlicz spacesFOS: MathematicsComplex Variables (math.CV)30C35 (Primary) 30H10 (Secondary)Value (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct

Patterns of trading profiles at the Nordic Stock Exchange. A correlation-based approach.

2016

We investigate the trading behavior of Finnish individual investors trading the stocks selected to compute the OMXH25 index in 2003 by tracking the individual daily investment decisions. We verify that the set of investors is a highly heterogeneous system under many aspects. We introduce a correlation based method that is able to detect a hierarchical structure of the trading profiles of heterogeneous individual investors. We verify that the detected hierarchical structure is highly overlapping with the cluster structure obtained with the approach of statistically validated networks when an appropriate threshold of the hierarchical trees is used. We also show that the combination of the cor…

Index (economics)Computer scienceGeneral MathematicsGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasFOS: Economics and businessSet (abstract data type)CorrelationIndividual investorsStock exchangeStatistically validated network0103 physical sciencesCluster (physics)Econometrics010306 general physicsStructure (mathematical logic)Quantitative Finance - Trading and Market Microstructureta114EconophysicsApplied Mathematicsta111EconophysicStatistical and Nonlinear PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Trading and Market Microstructure (q-fin.TR)Correlation-based networkInvestment decisionsGeneral Finance (q-fin.GN)Quantitative Finance - General FinanceChaos, Solitons & Fractals
researchProduct

The origin of in-plane stresses in axially moving orthotropic continua

2016

In this paper, we address the problem of the origin of in-plane stresses in continuous, two-dimensional high-speed webs. In the case of thin, slender webs, a typical modeling approach is the application of a stationary in-plane model, without considering the effects of the in-plane velocity field. However, for high-speed webs this approach is insufficient, because it neglects the coupling between the total material velocity and the deformation experienced by the material. By using a mixed Lagrange–Euler approach in model derivation, the solid continuum problem can be transformed into a solid continuum flow problem. Mass conservation in the flow problem, and the behaviour of free edges in th…

Inertial frame of referenceMaterials scienceaxially moving02 engineering and technologyOrthotropic materialViscoelasticityelastic0203 mechanical engineeringviscoelasticfree edgesorthotropicGeneral Materials Scienceta216Contraction (operator theory)Conservation of massta113one-dimensional040101 forestryta214Applied MathematicsMechanical Engineeringta11104 agricultural and veterinary sciencesMechanicsCondensed Matter PhysicsIn plane020303 mechanical engineering & transportsClassical mechanicstwo-dimensionalMechanics of MaterialsModeling and Simulation0401 agriculture forestry and fisheriesVector fieldAxial symmetryInternational Journal of Solids and Structures
researchProduct

Mappings of exponentially integrable distortion: Decay of the Jacobian

2018

We establish an integrability result on the reciprocal of the Jacobian determinant for a mapping of exponentially integrable distortion and thus answer a question raised by S. Hencl and P. Koskela.

Integrable systemApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysista11102 engineering and technology021001 nanoscience & nanotechnologyintegrability01 natural sciencesfunktioteoriasymbols.namesakeExponential growthmappings of finite distortionDistortionJacobian matrix and determinantsymbols0101 mathematicskompleksifunktiot0210 nano-technologyJacobianMathematicsProceedings of the American Mathematical Society
researchProduct

Generalized Dimension Distortion under Mappings of Sub-Exponentially Integrable Distortion

2010

We prove a dimension distortion estimate for mappings of sub-exponentially integrable distortion in Euclidean spaces, which is essentially sharp in the plane.

Integrable systemMathematics - Complex VariablesGeneral MathematicsModulota111Mathematical analysisData_MISCELLANEOUSComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONData_CODINGANDINFORMATIONTHEORY30C62Distortion (mathematics)Exponential growthDimension (vector space)TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYEuclidean geometryFOS: MathematicsComplex Variables (math.CV)Constant (mathematics)MathematicsMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct