Search results for "tangent"

showing 10 items of 123 documents

Volumes transverses aux feuilletages d'efinissables dans des structures o-minimales

2003

Let Fλ be a family of codimension p foliations defined on a family Mλ of manifolds and let Xλ be a family of compact subsets of Mλ. Suppose that Fλ, Mλ and Xλ are definable in an o-minimal structure and that all leaves of Fλ are closed. Given a definable family Ωλ of differential p-forms satisfaying iZ Ωλ = 0 forany vector field Z tangent to Fλ, we prove that there exists a constant A > 0 such that the integral of on any transversal of Fλ intersecting each leaf in at most one point is bounded by A. We apply this result to prove that p-volumes of transverse sections of Fλ are uniformly bounded.

Pure mathematicsGeneral MathematicsMathematical analysisStructure (category theory)Structures o-minimalesTangentCodimensionTransversal (combinatorics)Bounded functionUniform boundednessIntégration de formes différentiellesVector fieldConstant (mathematics)Feuilletages réelsMathematics
researchProduct

Integration on Surfaces

2012

We intend to study the integration of a differential k-form over a regular k-surface of class C 1 in \(\mathbb{R}^n\). To begin with, in Sect. 7.1, we undertake the integration over a portion of the surface that is contained in a coordinate neighborhood. Where possible, we will express the obtained results in terms of integration of vector fields. For example, we study the integral of a vector field on a portion of a regular surface in \(\mathbb{R}^3\) and also the integral over a portion of a hypersurface in \(\mathbb{R}^n\). In Sect. 7.3 we study the integration of differential k-forms on regular k-surfaces admitting a finite atlas.We discuss the need for the surface to be orientable so t…

Pure mathematicsHypersurfaceDifferential formAtlas (topology)Integral elementUnit tangent vectorVector fieldUnit normal vectorVector calculusMathematics
researchProduct

Foliations and Line Bundles

2014

In this chapter we start the global study of foliations on complex surfaces. The most basic global invariants which may be associated with such a foliation are its normal and tangent bundles, and here we shall prove several formulae and study several examples concerning the calculation of these bundles. We shall mainly follow the presentation given in [5]; the book [20] may also be of valuable help.

Pure mathematicsLine bundleLine (geometry)Foliation (geology)TangentMathematics::Symplectic GeometryMathematics
researchProduct

Tangent lines and Lipschitz differentiability spaces

2015

We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces. We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces. We show that any tangent space of a Lipschitz differentiability space contains at least $n$ distinct tangent lines, obtained as the blow-up of $n$ Lipschitz curves, whe…

Pure mathematicsLipschitz differentiability spaces; metric geometry; Ricci curvature; tangent of metric spaces01 natural sciencesMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaTangent lines to circles0103 physical sciencesTangent spaceClassical Analysis and ODEs (math.CA)FOS: Mathematicsmetric geometryDifferentiable function0101 mathematicsReal lineMathematicstangent of metric spacesQA299.6-433Applied Mathematics010102 general mathematicsTangentLipschitz differentiability spacesMetric Geometry (math.MG)Lipschitz continuityFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric spaceRicci curvatureMathematics - Classical Analysis and ODEsMetric (mathematics)010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometryAnalysis
researchProduct

On stability of logarithmic tangent sheaves. Symmetric and generic determinants

2021

We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of the projective space with constraints on the dimension and degree of the singularities of D. As main application, we prove that determinants and symmetric determinants have stable logarithmic tangent sheaves and we describe an open dense piece of the associated moduli space.

Pure mathematicsLogarithmMSC 14J60 14J17 14M12 14C05General Mathematics[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]Commutative Algebra (math.AC)determinant01 natural sciencesStability (probability)Mathematics - Algebraic GeometryMathematics::Algebraic GeometryDimension (vector space)FOS: Mathematicsstability of sheavesProjective space0101 mathematicsAlgebraic Geometry (math.AG)MathematicsDegree (graph theory)010102 general mathematicsLogarithmic tangentTangentisolated singularitiesmoduli space of semistable sheavesMathematics - Commutative AlgebraModuli space010101 applied mathematicsGravitational singularityMathematics::Differential Geometry[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Numerical Kodaira Dimension

2014

In this chapter we study, following [30] , the first properties of the Zariski decomposition of the cotangent bundle of a nonrational foliation. In particular, we shall give a detailed description of the negative part of that Zariski decomposition, and we shall obtain a detailed classification of foliations whose Zariski decomposition is reduced to its negative part (i.e. foliations of numerical Kodaira dimension 0). We shall also discuss the “singular” point of view adopted in [30].

Pure mathematicsMathematics::Algebraic GeometryFoliation (geology)Decomposition (computer science)Cotangent bundleKodaira dimensionPoint (geometry)Mathematics::Symplectic GeometryMathematics
researchProduct

The Rationality Criterion

2014

In this chapter we explain a remarkable theorem of Miyaoka [32] which asserts that a foliation whose cotangent bundle is not pseudoeffective is a foliation by rational curves. The original Miyaoka’s proof can be thought as a foliated version of Mori’s technique of construction of rational curves by deformations of morphisms in positive characteristic [33].

Pure mathematicsMathematics::Dynamical SystemsMathematics::Algebraic GeometryMorphismAlgebraic surfaceFoliation (geology)Principle of rationalityCotangent bundleRationalityMathematics::Differential GeometryMathematics::Symplectic GeometryEcological rationalityMathematics
researchProduct

Abstract and concrete tangent modules on Lipschitz differentiability spaces

2020

We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from a recent article by Bate--Kangasniemi--Orponen, this equivalence is used to show that the ${\rm Lip}-{\rm lip}$ -type condition ${\rm lip} f\le C|Df|$ implies the existence of a Lipschitz differentiable structure, and moreover self-improves to ${\rm lip} f =|Df|$. We also provide a direct proof of a result by Gigli and the second author that, for a space with a strongly rectifiable decomposition, Gigli'…

Pure mathematicsMathematics::Functional AnalysisekvivalenssimatematiikkaApplied MathematicsGeneral MathematicsTangentMetric Geometry (math.MG)Space (mathematics)Lipschitz continuitymetriset avaruudetFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Metric GeometryFOS: MathematicsEmbedding53C23 46E35 49J52Mathematics::Metric GeometryDirect proofDifferentiable functionIsomorphismMathematics::Differential GeometryMathematicsMathematics
researchProduct

Semi-Universal unfoldings and orbits of the contact group

1996

Pure mathematicsNumber theoryDifferential geometryFormal power seriesGeneral MathematicsTangent spaceBanach spaceContact groupTopological vector spaceTopology (chemistry)MathematicsAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
researchProduct

Dupin Cyclide Blends Between Quadric Surfaces for Shape Modeling

2004

We introduce a novel method to define Dupin cyclide blends between quadric primitives. Dupin cyclides are nonspherical algebraic surfaces discovered by French mathematician Pierre-Charles Dupin at the beginning of the 19th century. As a Dupin cyclide can be fully characterized by its principal circles, we have focussed our study on how to determine principal circles tangent to both quadrics being blended. This ensures that the Dupin cyclide we are constructing constitutes aG 1 blend. We use the Rational Quadratic Bezier Curve (RQBC) representation of circular arcs to model the principal circles, so the construction of each circle is reduced to the determination of the three control points o…

Pure mathematicsQuadratic equationQuadricSimple (abstract algebra)Dupin cyclideAlgebraic surfaceTangentBézier curveGeometryRepresentation (mathematics)Computer Graphics and Computer-Aided DesignMathematicsComputer Graphics Forum
researchProduct