Search results for "tangle"
showing 10 items of 420 documents
Coherent states: a contemporary panorama
2012
Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…
A criterion for entanglement in two two-level systems
2007
We prove a necessary and sufficient condition for the occurrence of entanglement in two two-level systems, simple enough to be of experimental interest. Our results are illustrated in the context of a spin star system analyzing the exact entanglement evolution of the central couple of spins.
Topological Minimally Entangled States via Geometric Measure
2014
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in [R. Orus, T.-C. Wei, O. Buerschaper, A. Garcia-Saez, arXiv:1406.0585] for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in …
Entanglement criteria for Dicke states
2013
Dicke states are a family of multi-qubit quantum states with interesting entanglement properties and have been observed in many experiments. We construct entanglement witnesses for detecting genuine multiparticle entanglement in the vicinity of these states. We use the approach of PPT mixtures to derive the conditions analytically. For nearly all cases, our criteria are stronger than all conditions previously known.
Duality of reduced density matrices and their eigenvalues
2014
For states of quantum systems of N particles with harmonic interactions we prove that each reduced density matrix ρ obeys a duality condition. This condition implies duality relations for the eigenvalues λk of ρ and relates a harmonic model with length scales ${{\ell }_{1}},{{\ell }_{2}},\ldots ,{{\ell }_{N}}$ with another one with inverse lengths $1/{{\ell }_{1}},1/{{\ell }_{2}},\ldots ,1/{{\ell }_{N}}$. Entanglement entropies and correlation functions inherit duality from ρ. Self-duality can only occur for noninteracting particles in an isotropic harmonic trap.
Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence
2014
In this paper, we use a non-equilibrium thermodynamic framework to generalize a previous nonlocal model of counterflow superfluid turbulence to incorporate some new coupled terms which may be relevant in the evolution of inhomogeneous vortex tangles. The theory chooses as fundamental fields the energy density, the heat flux, and the averaged vortex line length per unit volume. The constitutive quantities are assumed to depend on the fundamental fields and on their first spatial derivatives, allowing us to describe thermal dissipation, vortex diffusion and a new contribution to vortex formation. The restrictions on the constitutive relations are deduced from the entropy principle, using the …
Classification of multipartite systems featuring only $|W\rangle$ and $|GHZ\rangle$ genuine entangled states
2015
In this paper we present several multipartite quantum systems featuring the same type of genuine (tripartite) entanglement. Based on a geometric interpretation of the so-called $|W\rangle$ and $|GHZ\rangle$ states we show that the classification of all multipartite systems featuring those and only those two classes of genuine entanglement can be deduced from earlier work of algebraic geometers. This classification corresponds in fact to classification of fundamental subadjoint varieties and establish a connection between those systems, well known in Quantum Information Theory and fundamental simple Lie algebras.
A simple comparative analysis of exact and approximate quantum error correction
2014
We present a comparative analysis of exact and approximate quantum error correction by means of simple unabridged analytical computations. For the sake of clarity, using primitive quantum codes, we study the exact and approximate error correction of the two simplest unital (Pauli errors) and nonunital (non-Pauli errors) noise models, respectively. The similarities and differences between the two scenarios are stressed. In addition, the performances of quantum codes quantified by means of the entanglement fidelity for different recovery schemes are taken into consideration in the approximate case. Finally, the role of self-complementarity in approximate quantum error correction is briefly ad…
Indistinguishability-enhanced entanglement recovery by spatially localized operations and classical communication
2021
We extend a procedure exploiting spatial indistinguishability of identical particles to recover the spoiled entanglement between two qubits interacting with Markovian noisy environments. Here, the spatially localized operations and classical communication (sLOCC) operational framework is used to activate the entanglement restoration from the indistinguishable constituents. We consider the realistic scenario where noise acts for the whole duration of the process. Three standard types of noises are considered: a phase damping, a depolarizing, and an amplitude damping channel. Within this general scenario, we find the entanglement to be restored in an amount proportional to the degree of spati…
Unifying approach to the quantification of bipartite correlations by Bures distance
2014
The notion of distance defined on the set of states of a composite quantum system can be used to quantify total, quantum and classical correlations in a unifying way. We provide new closed formulae for classical and total correlations of two-qubit Bell-diagonal states by considering the Bures distance. Complementing the known corresponding expressions for entanglement and more general quantum correlations, we thus complete the quantitative hierarchy of Bures correlations for Bell-diagonal states. We then explicitly calculate Bures correlations for two relevant families of states: Werner states and rank-2 Bell-diagonal states, highlighting the subadditivity which holds for total correlations…