Search results for "termini"
showing 10 items of 365 documents
Hopcroft’s Algorithm and Cyclic Automata
2008
Minimization of deterministic finite automata is a largely studied problem of the Theory of Automata and Formal Languages. It consists in finding the unique (up to isomorphism) minimal deterministic automaton recognizing a set of words. The first approaches to this topic can be traced back to the 1950’s with the works of Huffman and Moore (cf. [12,15]). Over the years several methods to solve this problem have been proposed but the most efficient algorithm in the worst case was given by Hopcroft in [11]. Such an algorithm computes in O(n log n) the minimal automaton equivalent to a given automaton with n states. The Hopcroft’s algorithm has been widely studied, described and implemented by …
Hopcroft's algorithm and tree-like automata
2011
Minimizing a deterministic finite automata (DFA) is a very important problem in theory of automata and formal languages. Hopcroft's algorithm represents the fastest known solution to the such a problem. In this paper we analyze the behavior of this algorithm on a family binary automata, called tree-like automata, associated to binary labeled trees constructed by words. We prove that all the executions of the algorithm on tree-like automata associated to trees, constructed by standard words, have running time with the same asymptotic growth rate. In particular, we provide a lower and upper bound for the running time of the algorithm expressed in terms of combinatorial properties of the trees…
Postselection Finite Quantum Automata
2010
Postselection for quantum computing devices was introduced by S. Aaronson[2] as an excitingly efficient tool to solve long standing problems of computational complexity related to classical computing devices only. This was a surprising usage of notions of quantum computation. We introduce Aaronson's type postselection in quantum finite automata. There are several nonequivalent definitions of quantumfinite automata. Nearly all of them recognize only regular languages but not all regular languages. We prove that PALINDROMES can be recognized by MM-quantum finite automata with postselection. At first we prove by a direct construction that the complement of this language can be recognized this …
TIGHT BOUNDS FOR THE SPACE COMPLEXITY OF NONREGULAR LANGUAGE RECOGNITION BY REAL-TIME MACHINES
2013
We examine the minimum amount of memory for real-time, as opposed to one-way, computation accepting nonregular languages. We consider deterministic, nondeterministic and alternating machines working within strong, middle and weak space, and processing general or unary inputs. In most cases, we are able to show that the lower bounds for one-way machines remain tight in the real-time case. Memory lower bounds for nonregular acceptance on other devices are also addressed. It is shown that increasing the number of stacks of real-time pushdown automata can result in exponential improvement in the total amount of space usage for nonregular language recognition.
Quantum Finite Multitape Automata
1999
Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages can be recognized by quantum finite automata. A. Ambainis and R. Freivalds [1] proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by deterministic or probabilistic finite automata. This …
Probabilistic Reversible Automata and Quantum Automata
2002
To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different possible models of PRA and corresponding models of quantum finite automata. We also propose a classification of reversible finite 1-way automata.
Amount of Nonconstructivity in Finite Automata
2009
When D. Hilbert used nonconstructive methods in his famous paper on invariants (1888), P.Gordan tried to prevent the publication of this paper considering these methods as non-mathematical. L. E. J. Brouwer in the early twentieth century initiated intuitionist movement in mathematics. His slogan was "nonconstructive arguments have no value for mathematics". However, P. Erdos got many exciting results in discrete mathematics by nonconstructive methods. It is widely believed that these results either cannot be proved by constructive methods or the proofs would have been prohibitively complicated. R.Freivalds [7] showed that nonconstructive methods in coding theory are related to the notion of…
Quantum Finite State Transducers
2001
We introduce quantum finite state transducers (qfst), and study the class of relations which they compute. It turns out that they share many features with probabilistic finite state transducers, especially regarding undecidability of emptiness (at least for low probability of success). However, like their 'little brothers', the quantum finite automata, the power of qfst is incomparable to that of their probabilistic counterpart. This we show by discussing a number of characteristic examples.
Improved constructions of quantum automata
2008
We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \frac{4}{\epsilon} \log 2p + O(1) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of \log p than the previously known construction of Ambainis and Freivalds (quant-ph/9802062). Similarly to Ambainis and Freivalds, our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some results in this direction.
Improved constructions of mixed state quantum automata
2009
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A. Ambainis and R. Freivalds that quantum finite automata with pure states can have an exponentially smaller number of states than deterministic finite automata recognizing the same language. There was an unpublished ''folk theorem'' proving that quantum finite automata with mixed states are no more super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We prove that there is an infinite sequence of distinct int…