Search results for "tetragonal crystal"

showing 10 items of 216 documents

Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7 at High Pressure and Delineation of …

2015

We report a combined experimental and theoretical study of melilite-type germanate, Sr2ZnGe2O7, under compression. In situ high-pressure X-ray diffraction and Raman scattering measurements up to 22 GPa were complemented with first-principles theoretical calculations of structural and lattice dynamics properties. Our experiments show that the tetragonal structure of Sr2ZnGe2O7 at ambient conditions transforms reversibly to a monoclinic phase above 12.2 Gpa with similar to 1% volume drop at the phase transition pressure. Density functional calculations indicate the transition pressure at, similar to 13 GPa, which agrees well with the experimental value. The structure of the high-pressure mono…

Phase transitionThermodynamicsengineering.materialMagnetic-PropertiesInorganic ChemistryCondensed Matter::Materials ScienceTetragonal crystal systemX-Ray DiffractionNatural meliliteGermanatePhysical and Theoretical ChemistryCrystal-StructureThermal-ExpansionAkermaniteLow-TemperatureChemistryRaman-SpectraMeliliteSolid-SolutionFISICA APLICADACompressibilityengineeringCondensed Matter::Strongly Correlated ElectronsCascaded CHI((3))Ambient pressureSolid solutionMonoclinic crystal systemInorganic chemistry
researchProduct

Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph

2015

We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneo…

Phase transitionTransformationsMaterials scienceCoprecipitationFOS: Physical sciencesGeneral Physics and AstronomySynchrotronPerformancesPhysics - GeophysicsTetragonal crystal systemX-Ray DiffractionAb initio quantum chemistry methodsCoprecipitationPhysics - Chemical PhysicsCrystalMonaziteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Phase-transitionCompresssibilityGeophysics (physics.geo-ph)CrystallographyPolymorphism (materials science)FISICA APLICADAX-ray crystallographyPowder diffractionStateMonoclinic crystal system
researchProduct

Integrated experimental and theoretical study on the phase transition and photoluminescent properties of ZrO2:xTb3+ (x=1, 2, 4 and 8 mol %)

2021

Abstract Zirconia (ZrO2) has been intensively studied as an important ceramic material, and numerous technological applications have been found. The present work deals with synthesizing and characterizing the phase transition (cubic vs tetragonal) and photoluminescence emissions of ZrO2:xTb3+ (x = 1,2,4 and 8 mol%). The samples formed by the complex polymerization were thoroughly characterized for physicochemical properties such powder by X-ray diffraction (XRD), and Raman and diffuse reflectance spectroscopies. First-principle calculations at the density functional theory level were performed to complement and rationalize the experimental results. An energy transfer mechanism which promote…

Phase transitionenergy transferPhotoluminescenceMaterials sciencexTb3+ (x = 124 and 8mol%) [ZrO2]lighting devicesMechanical EngineeringDopingCondensed Matter PhysicsDFT calculationssymbols.namesakeTetragonal crystal systemMechanics of Materialsphase transitionvisual_artvisual_art.visual_art_mediumsymbolsPhysical chemistryGeneral Materials ScienceDensity functional theoryCeramicDiffuse reflectionZIRCÔNIARaman spectroscopy
researchProduct

Influences of Structure and Composition on the Photoelectrochemical Behaviour of Anodic Films on Zr and Zr-20at.%Ti

2008

Abstract A photoelectrochemical investigation on anodic films of different thickness grown on sputter-deposited Zr and Zr–20 at.%Ti was carried out. The estimated optical band gap and flat band potential of thick ( U F  ≥ 50 V) anodic films were related to their crystalline structure and compared with those obtained for thinner ( U F  ≤ 8 V/SCE) anodic oxides having undetermined crystalline structure. The E g values obtained by photocurrent spectroscopy were also compared with the experimental band gap estimated by other optical ex situ techniques and with the available theoretical estimates of the zirconia electronic structures in an attempt to reconcile the wide range of band gap data rep…

PhotocurrentMaterials scienceBand gapGeneral Chemical EngineeringZr-Ti alloys; passive films; photoelectrochemistry; band gap [zirconium]Analytical chemistryMineralogyCrystal structurephotoelectrochemistryAnodeTetragonal crystal systemSettore ING-IND/23 - Chimica Fisica Applicatapassive filmband gapzirconium : Zr-Ti alloyElectrochemistryMixed oxideCubic zirconiaSpectroscopy
researchProduct

Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniques.

2019

Lead halide (APbX3) perovskites, in polycrystalline thin films but also perovskite nanoparticles (NPs) has demonstrated excellent performance to implement a new generation of photovoltaic and photonic devices. The structural characterization of APbX3 thin films using (scanning) transmission electron microscopy ((S)TEM) techniques can provide valuable information that can be used to understand and model their optoelectronic performance and device properties. However, since APbX3 perovskites are soft materials, their characterization using (S)TEM is challenging. Here, we study and compare the structural properties of two different metal halide APbX3 perovskite thin films: bulk CH3NH3PbI3 prep…

PhotoluminescenceMaterials scienceBand gapMechanical EngineeringNanoparticleBioengineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesTetragonal crystal systemChemical engineeringMechanics of MaterialsTransmission electron microscopyGeneral Materials ScienceElectrical and Electronic EngineeringThin film0210 nano-technologyHigh-resolution transmission electron microscopyPerovskite (structure)Nanotechnology
researchProduct

Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3−xCoxGa

2011

Ferrimagnetic Mn3−xCoxGa compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x>0.5 crystallize in the CuHg2Ti structure. A tetragonal distortion of the cubic structure occurs for x≤0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater–Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6<x≤0.8 as most promising for a high spin polarization at the Fermi level. Individual Mn moments on…

Physics and Astronomy (miscellaneous)Magnetic momentSpin polarizationCondensed matter physicsChemistryMagnetic circular dichroismFermi levelCondensed Matter::Materials ScienceMagnetizationTetragonal crystal systemsymbols.namesakeFerrimagnetismFormula unitsymbolsCondensed Matter::Strongly Correlated ElectronsApplied Physics Letters
researchProduct

Spin-orbit torques in strained PtMnSb from first principles

2021

We compute spin-orbit torques (SOTs) in strained PtMnSb from first principles. We consider both tetragonal strain and shear strain. We find a strong linear dependence of the field-like SOTs on these strains, while the antidamping SOT is only moderately sensitive to shear strain and even insensitive to tetragonal strain. We also study the dependence of the SOT on the magnetization direction. In order to obtain analytical expressions suitable for fitting our numerical \textit{ab-initio} results we derive a general expansion of the SOT in terms of all response tensors that are allowed by crystal symmetry. Our expansion includes also higher-order terms beyond the usually considered lowest order…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsStrain (chemistry)Ab initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetizationTetragonal crystal systemCondensed Matter::Materials Science0103 physical sciencesOrbit (dynamics)Shear stressAstrophysics::Solar and Stellar Astrophysicsddc:530Sensitivity (control systems)010306 general physics0210 nano-technologySpin-½
researchProduct

Role of dimensionality in spontaneous magnon decay: easy-plane ferromagnet

2014

We calculate magnon lifetime in an easy-plane ferromagnet on a tetragonal lattice in transverse magnetic field. At zero temperature magnons are unstable with respect to spontaneous decay into two other magnons. Varying ratio of intrachain to interchain exchanges in this model we consider the effect of dimensionality on spontaneous magnon decay. The strongest magnon damping is found in the quasi-one-dimensional case for momenta near the Brillouin zone boundary. The sign of a weak interchain coupling has a little effect on the magnon decay rate. The obtained theoretical results suggest possibility of experimental observation of spontaneous magnon decay in a quasi-one-dimensional ferromagnet C…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter::OtherMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBrillouin zoneTetragonal crystal systemCondensed Matter::Materials ScienceCondensed Matter - Strongly Correlated ElectronsFerromagnetismSpin waveLattice (order)Quantum electrodynamicsCondensed Matter::Strongly Correlated ElectronsZero temperature[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]Curse of dimensionality
researchProduct

Low-temperature anharmonic lattice deformations near rotator impurities: A quantum Monte Carlo approach.

1994

At zero temperature the equilibrium structures of a system consisting of a quantum rotator (${\mathrm{N}}_{2}$) embedded in a relaxing lattice (Ar) surrounding are studied with a variational approach. With symmetric wave functions (para-${\mathrm{N}}_{2}$), we obtain a cubic lattice deformation near the rotator, while with antisymmetric wave functions (ortho-${\mathrm{N}}_{2}$), we obtain a tetragonal lattice deformation forming a stable oriented ground state. At low temperatures, we investigate the properties of this system with a quantum Monte Carlo simulation. On top of the tetragonal deformation the width of the nearest-neighbor oscillations follows classical ``scaling'' laws according …

PhysicsTetragonal crystal systemCondensed matter physicsQuantum Monte CarloLattice (order)Monte Carlo methodAnharmonicityWave functionQuantum statistical mechanicsGround statePhysical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
researchProduct

Structural, electronic, and magnetic properties of tetragonalMn3−xGa: Experiments and first-principles calculations

2008

This work reports on the electronic, magnetic, and structural properties of the binary intermetallic compounds ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$. The tetragonal ${\mathrm{DO}}_{22}$ phase of the ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$ series, with $x$ varying from 0 to 1.0 in steps of $x=0.1$, was successfully synthesized and investigated. It was found that all these materials are hard magnetic, with energy products ranging from $10.1\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensuremath{-}3}$ for low Mn content $(x\ensuremath{\rightarrow}1)$ to $61.6\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensurema…

PhysicsTetragonal crystal systemParamagnetismCurie–Weiss lawCondensed matter physicsFerrimagnetismContent (measure theory)Order (ring theory)Curie temperatureType (model theory)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct