Search results for "tetrathiafulvalene"

showing 10 items of 159 documents

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

2019

The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…

Materials scienceFullerenemetal–organic frameworks (MOFs)General Physics and Astronomy010402 general chemistrylcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperchemistry.chemical_compoundMoleculeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringdonor–acceptorPorositylcsh:ScienceMaterials010405 organic chemistrylcsh:TNanotecnologiafullerenecharge transferSorptionlcsh:QC1-9990104 chemical sciencestetrathiafulvalene (TTF)NanoscienceChemical engineeringchemistryDensity functional theoryMetal-organic frameworklcsh:QMesoporous materialTetrathiafulvalenelcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Supramolecular assembly of pyrene-tetrathiafulvalene hybrids on graphene: Structure-property relationships and biosensing activity

2021

Two different molecular receptors (1 and 2) incorporating one and three pyrene units to promote the π–π interaction with the basal plane of graphene are reported. In order to modulate the electronic properties of graphene, the new receptors are endowed with an electron-donor tetrathiafulvalene moiety (exTTF). The resulting non-covalent hybrids have been characterized by different analytical, spectroscopic and microscopic techniques (TGA, Raman, UV-Vis absorption, TEM and XPS), and the supramolecular interaction of the molecular systems with graphene has been investigated by theoretical calculations. The electrochemical behavior of the pyrene-exTTF hybrids onto distinct graphene-based materi…

Materials scienceGrapheneSupramolecular chemistryGeneral Chemistrylaw.inventionSupramolecular assemblychemistry.chemical_compoundCrystallographysymbols.namesakechemistrylawMaterials ChemistrysymbolsMoietyPyreneRaman spectroscopyBiosensorTetrathiafulvalene
researchProduct

Magnetic molecular metals based on the organic donor molecule BET (BET = Bis(ethylenethio)tetrathiafulvalene): The series BET2[MCI4] (M3⊕= Ga, Fe)

1997

Materials scienceSeries (mathematics)Bicyclic moleculeStereochemistryMechanical EngineeringCrystal structureMagnetic susceptibilitychemistry.chemical_compoundCrystallographychemistryMechanics of MaterialsElectrical resistivity and conductivityMoleculeGeneral Materials ScienceTetrathiafulvaleneAdvanced Materials
researchProduct

Tetrathiafulvalene-Based Mixed-Valence Acceptor-Donor-Acceptor Triads: A Joint Theoretical and Experimental Approach

2013

This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)-based acceptor-donor-acceptor triads (BQ-TTF-BQ and BTCNQ-TTF - BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano-p-quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum-chemical calculations. Emphasis is placed on the mixed-valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ-TTF-BQ and BTCNQ-TTF-BTCNQ triads in…

Models MolecularElectronic structureDonor–acceptor systemsElectronsNanotechnology010402 general chemistry01 natural sciencesCatalysisElectron Transportchemistry.chemical_compoundHeterocyclic CompoundsNitrilesBenzene Derivatives010405 organic chemistryChemistryBusiness administrationOrganic ChemistryElectron Spin Resonance SpectroscopyGeneral ChemistryAcceptor3. Good health0104 chemical sciencesDensity functional calculationsFleroxacinChristian ministryMixed-valent compoundsDonor acceptorOxidation-ReductionTetrathiafulvaleneNaphthoquinonesEPR spectroscopyChemistry - A European Journal
researchProduct

A chirality-induced alpha phase and a novel molecular magnetic metal in the BEDT-TTF/tris(croconate)ferrate(iii) hybrid molecular system

2006

The novel paramagnetic and chiral anion [Fe(C5O5)3]32 has been combined with the organic donor BEDT-TTF (= ET = bis(ethylenedithio)tetrathiafulvalene) to yield the first chirality- induced α phase and a paramagnetic metal. Gomez Garcia, Carlos, Carlos.Gomez@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es ; Gimenez Saiz, Carlos, Carlos.Gimenez@uv.es

Models MolecularMagnetic metalUNESCO::QUÍMICAIronInorganic chemistryMolecular ConformationCyclopentanesCrystallography X-RayFerric Compounds:QUÍMICA [UNESCO]CatalysisIonMetalMagneticsParamagnetismchemistry.chemical_compoundPhase (matter)Materials ChemistryMoleculeSulfhydryl CompoundsNovelOrganicMolecular StructureChemistryUNESCO::QUÍMICA::Química analíticaTemperatureMetals and AlloysGeneral ChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsParamagneticCrystallographyvisual_artYield (chemistry)Paramagnetic ; Organic ; Magnetic metal ; Novel:QUÍMICA::Química analítica [UNESCO]Ceramics and Compositesvisual_art.visual_art_mediumChirality (chemistry)TetrathiafulvaleneChem. Commun.
researchProduct

Biomimetic oxygen reduction by cofacial porphyrins at a liquid-liquid interface.

2012

Oxygen reduction catalyzed by cofacial metalloporphyrins at the 1,2-dichlorobenzene−water interface was studied with two lipophilic electron donors of similar driving force, 1,1'-dimethylferrocene (DMFc) and tetrathiafulvalene (TTF). The reaction produces mainly water and some hydrogen peroxide, but the mediator has a significant effect on the selectivity, as DMFc and the porphyrins themselves catalyze the decomposition and the further reduction of hydrogen peroxide. Density functional theory calculations indicate that the biscobaltporphyr- in, 4,5-bis(5-(2,8,13,17-tetraethyl-3,7,12,18-tetramethylporphyrinyl))-9,9-dimethylxanthene, Co2(DPX), actually catalyzes oxygen reduction to hydrogen p…

Models MolecularPorphyrinsMolecular Conformationchemistry.chemical_element02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesBiochemistryOxygenCatalysisCatalysisElectron Transportchemistry.chemical_compoundColloid and Surface ChemistryBiomimeticsHeterocyclic CompoundsMoleculePerchloric acidFerrous CompoundsHydrogen peroxideta116ElectrodesSelective catalytic reductionGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesOxygenchemistryQuantum Theory0210 nano-technologySelectivityHydrophobic and Hydrophilic InteractionsTetrathiafulvaleneJournal of the American Chemical Society
researchProduct

Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound

2000

Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this…

MultidisciplinaryMagnetismCoordination polymerStereochemistrySupramolecular chemistryCrystal structureParamagnetismchemistry.chemical_compoundchemistryFerromagnetismChemical physicsCondensed Matter::SuperconductivityHybrid materialTetrathiafulvaleneNature
researchProduct

Recent advances in polyoxometalate-containing molecular conductors

2005

The recent advances in crystalline conducting molecular materials based on polyoxometalates (POMs) and organic donors of the tetrathiafulvalene (TTF) family or perylene are discussed. We emphasise the wide diversity of POM structural types and the variety of packing architectures for the organic molecules that can be induced by these inorganic anions. Besides structural effects, we show that these hybrids can have interesting electric and/or magnetic properties. Thus, in the last years the common belief that this type of radical salts containing such big and highly charged anions could only exhibit poor conducting properties has been refuted by the production of new materials exhibiting hig…

New materialsNanotechnologyOrganic moleculesInorganic ChemistryMetalchemistry.chemical_compoundchemistryvisual_artPolyoxometalateMaterials Chemistryvisual_art.visual_art_mediumPhysical and Theoretical ChemistryMolecular materialsElectrical conductorTetrathiafulvalenePeryleneCoordination Chemistry Reviews
researchProduct

Multifunctionality in hybrid molecular materials: design of ferromagnetic molecular metals and hybrid magnets

2003

We report on the synthesis and physical properties of novel hybrid organic–inorganic molecular materials combining ferromagnetic bimetallic oxalato-based networks and functional organic molecules as the donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) or cationic nitroxide free radicals. # 2002 Elsevier Science B.V. All rights reserved.

Nitroxide mediated radical polymerizationChemistryMechanical EngineeringInorganic chemistryMetals and AlloysNanotechnologyCrystal structureCondensed Matter PhysicsMagnetic susceptibilityElectronic Optical and Magnetic Materialschemistry.chemical_compoundFerromagnetismMechanics of MaterialsMagnetMaterials ChemistryHybrid materialBimetallic stripTetrathiafulvaleneSynthetic Metals
researchProduct

Tetrathiafulvalene-Polychlorotriphenylmethyl Dyads: Influence of Bridge and Open-Shell Characteristics on Linear and Nonlinear Optical Properties

2017

Three conjugated donor-π-acceptor radical systems (1 a–1 c) were prepared by bridging a tetrathiafulvalene (TTF) electron-donor unit to a polychlorotriphenylmethyl (PTM) electron-acceptor radical through vinylene units of different lengths. The dependence of the intramolecular charge transfer on the length of the conjugated bridge has been analyzed by different electrochemical and spectroscopic techniques. Linear optical properties and the second-order nonlinear optical (NLO) response of these derivatives have been computed by comparing systems 1 a–1 c with the non-radical analogues (2 a–2 c). Interestingly, an enhanced NLO response is predicted for dyads 1 a–1 c with PTM in the radical for…

Nonlinear opticsRadicalConjugated system010402 general chemistryPhotochemistry01 natural sciencesCatalysischemistry.chemical_compoundDonor–acceptor complexesOpen shellchemistry.chemical_classification010405 organic chemistryOrganic ChemistryNonlinear opticsGeneral ChemistryElectron acceptorAcceptor3. Good health0104 chemical sciencesCrystallographychemistryIntramolecular forceTetrathiafulvaleneIntramolecular charge transferPTM radicalsTetrathiafulvaleneChemistry - A European Journal
researchProduct