Search results for "thermal treatment"
showing 10 items of 146 documents
Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stab…
2017
Abstract The relatively low activity at lower temperatures and high cost of SSZ-13 zeolite from organotemplate synthesis are two of major problems of presently commercialized Cu-SSZ-13 catalysts for NH3-SCR reaction. Cu-exchanged Al-rich SSZ-13 catalysts with Si/Al = 4 from organotemplate-free synthesis have been prepared, and show superior NH3-SCR performance with NO conversions above 85% at wide-temperature window ranging from 150 to 650 °C. Cu-Na-SSZ-13 catalysts with varied amount of residual Na+ were prepared by partial ion-exchange of as-prepared Al-rich Na-SSZ-13, and it’s found that Cu-Na-SSZ-13 catalyst with moderate Na+ content can improve both the low-temperature activity and its…
Evidence in the formation of conjugated linoleic acids from thermally induced 9t12t linoleic acid: a study by gas chromatography and infrared spectro…
2009
Accepted version of article published in the journal: Chemistry and Physics of Lipids. Published version available on Science Direct: http://dx.doi.org/10.1016/j.chemphyslip.2009.07.002 Thermally induced isomerisation leading to the formation of conjugated linoleic acids (CLAs) has been observed for the first time during the thermal treatment of 9t12t fatty acid triacylglycerol, and methyl ester. Fifteen microlitre portions of the triacylglycerol sample containing 9t12t fatty acid (trilinoelaidin) were placed in micro glass ampoules and sealed under nitrogen, then subjected to thermal treatment at 250 degrees C. The glass ampoules were removed at regular time intervals, cut open, and the co…
Synthesis of large-pore ordered mesoporous silicas containing aminopropyl groups
2005
Ordered mesoporous silicas with large-pore diameters incorporating aminopropyl groups in variable quantity have been synthesized via the co-condensation of tetraethyl orthosilicate (TEOS) and 3-tert-butyloxycarbonylaminopropyltriethoxysilane templated with nonionic surfactant P123 under acidic conditions. The deprotection of amino groups was then quantitatively achieved either by thermal treatment or acid hydrolysis followed by Et3N treatment, both routes leading to exactly the same materials. We showed that the free amino centers are fully accessible, by using the condensation of the amine function with benzaldehyde.
Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere
2015
Doping and stability of monolayer low defect content graphene transferred on a silicon dioxide substrate on silicon are investigated by micro-Raman spectroscopy and atomic force microscopy (AFM) during thermal treatments in oxygen and vacuum controlled atmosphere. The exposure to molecular oxygen induces graphene changes as evidenced by a blue-shift of the G and 2D Raman bands, together with the decrease of I2D/IG intensity ratio, which are consistent with a high p-type doping (∼1013 cm-2) of graphene. The successive thermal treatment in vacuum does not affect the induced doping showing this latter stability. By investigating the temperature range 140-350 °C and the process time evolution, …
Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth
2015
Abstract We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu 2 O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.
Thermally Induced Structural Modification of Silica Nanoparticles Investigated by Raman and Infrared Absorption Spectroscopies
2010
We report an experimental investigation by Raman and infrared (IR) absorption spectroscopies on the structural modifications induced by isochronal thermal treatments on amorphous SiO2 nanoparticles (fumed silica). In particular, three different commercial types of this material, characterized by particle mean diameters of 7, 14, and 40 nm, were subjected to thermal treatments from 100 up to 1000 °C. We found that some properties of fumed silica, such as the SiOSi mean bond angle, ring size distribution, and surface adsorbed water content, are drastically different from those of common bulk silica materials and intimately related to the particles' dimension. The SiOSi mean bond angle, probed…
WS2/MoS2 Heterostructures via Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters
2020
The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…
WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters
2020
The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationi…
Formation of complex defects in Mn c Mg 1–c O and Ni c Mg 1–c O single solid solution
2005
The results of investigation of the fast neutron irradiation and thermal treatment on absorption spectra of single solid solution of MncMg1–cO, NicMg1–cO and MgO crystals are presented. It is shown that at impurity ion concentration larger than 0.1 mass.% a probability of formation of aggregate centers consisting of more than three F+- or F-centers is small. After thermal treatment of MncMg1–cO and NicMg1–cO single solid solution irradiated by fast neutrons additional wide bands are observed. We assume that these additional bands belong to complex centers of Mn3+-VMg and Ni3+-VMg. The mechanisms of bands formation are discussed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Crystal chemistry and redox behaviour of antimony strontium calcium perovskites
2000
The compound Sr2Sb1.4Ca0.6O6 and their reduced forms Sr2Sb1.4Ca0.6O5.17 and Sr2Sb1.4Ca0.6O4.84 have been prepared and characterized by powder X-ray diffraction, electron diffraction, iodometric analyses and thermogravimetric analysis. The three phases with different oxygen stoichiometries are structurally related to the perovskite and show symmetry distortions from the ideal cubic structure (with cell parameter ap). The crystal structure of Sr2Sb1.4Ca0.6O6 may be refined by the Rietveld method from powder X-ray diffraction data using the space group P21/n, and the cell parameters a=5.776(2), b=5.7837(2), c=8.1718(3) A, β=90.039(3)° with the same structural model than for previously studied …