Search results for "thermoelectric material"

showing 10 items of 72 documents

On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials

2018

Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice th…

Materials science02 engineering and technology010402 general chemistryThermoelectric energy conversion01 natural scienceslcsh:TechnologyIndustrial wasteElectrical resistivity and conductivityHeat recovery ventilationThermoelectric effectGeneral Materials ScienceThermal stabilitylcsh:Microscopylcsh:QC120-168.85lcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyThermoelectric materialsEngineering physics0104 chemical scienceslcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringphase separation0210 nano-technologylcsh:Engineering (General). Civil engineering (General)Heusler compounds; phase separation; thermoelectricsHeusler compoundsthermoelectricslcsh:TK1-9971Solid solutionMaterials; Volume 11; Issue 4; Pages: 649
researchProduct

Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting

2015

We report a high-performance thermoelectric (TE) oxide-based module using the segmentation of half-Heusler Ti_(0.3)Zr_(0.35)Hf_(0.35)CoSb_(0.8)Sn_(0.2) and misfit-layered cobaltite Ca_3Co_4O_(9+δ) as the p-leg and 2 % Al-doped ZnO as the n-leg. The maximum output power of a 4-couple segmented module at ΔT=700 K attains a value of approximately 6.5 kW m^(−2), which is three times higher than that of the best reported non-segmented oxide module. The TE properties of individual legs, as well as the interfacial contact resistances, were characterized as a function of temperature. Numerical modeling was used to predict the efficiency and to evaluate the influence of the electrical and thermal lo…

Materials scienceAnalytical chemistryOxideThermoelectric materialsCobaltitechemistry.chemical_compoundGeneral EnergychemistryWaste heatThermoelectric effectThermalElectronic engineeringDegradation (geology)Energy transformationEnergy Technology
researchProduct

Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds

2012

The 18-electron ternary intermetallic systems TiNiSn and TiCoSb are promising for applications as high-temperature thermoelectrics and comprise earth-abundant, and relatively nontoxic elements. Heusler and half-Heusler compounds are usually prepared by conventional solid state methods involving arc-melting and annealing at high temperatures for an extended period of time. Here, we report an energy-saving preparation route using a domestic microwave oven, reducing the reaction time significantly from more than a week to one minute. A microwave susceptor material rapidly heats the elemental starting materials inside an evacuated quartz tube resulting in near single phase compounds. The initia…

Materials scienceAnnealing (metallurgy)General Chemical EngineeringMicrowave ovenIntermetallicGeneral ChemistryThermoelectric materialslaw.inventionChemical engineeringlawThermoelectric effectMaterials ChemistryTernary operationMicrowaveSusceptor
researchProduct

Enhanced thermoelectric properties of lightly Nb doped SrTiO3 thin films

2021

Novel thermoelectric materials developed for operation at room temperature must have similar or better performance along with being as ecofriendly as those commercially used, e.g., BiTe, in terms of their toxicity and cost. In this work, we present an in-depth study of the thermoelectric properties of epitaxial Nb-doped strontium titanate (SrTiNbO) thin films as a function of (i) doping concentration, (ii) film thickness and (iii) substrate type. The excellent crystal quality was confirmed by high resolution transmission electron microscopy and X-ray diffraction analysis. The thermoelectric properties were measured by the three-omega method (thermal conductivity) and van der Pauw method (el…

Materials scienceBioengineering02 engineering and technology010402 general chemistryMaximum power factor01 natural scienceschemistry.chemical_compoundVan der Pauw methodSeebeck coefficientThermoelectric effectFigure of meritGeneral Materials ScienceHigh-resolution transmission electron microscopyDoping concentrationLanthanum Strontium AluminateThermo-Electric materialsbusiness.industryDopingGeneral EngineeringThermoelectric figure of meritGeneral Chemistry021001 nanoscience & nanotechnologyThermoelectric materialsAtomic and Molecular Physics and Optics0104 chemical scienceschemistryThermoelectric propertiesStrontium titanateOptoelectronicsDifferent substratesSeebeck coefficient measurement0210 nano-technologybusiness
researchProduct

Electronic transport properties of electron- and hole-doped semiconductingC1bHeusler compounds:NiTi1−xMxSn(M=Sc,V)

2010

The substitutional series of Heusler compounds ${\text{NiTi}}_{1\ensuremath{-}x}{M}_{x}\text{Sn}$ (where $M=\text{Sc},\text{V}$ and $0lx\ensuremath{\le}0.2$) were synthesized and investigated with respect to their electronic structure and transport properties. The results show the possibility to create $n$-type and $p$-type thermoelectrics within one Heusler compound. The electronic structure and transport properties were calculated by all-electron ab initio methods and compared to the measurements. Hard x-ray photoelectron spectroscopy was carried out and the results are compared to the calculated electronic structure. Pure NiTiSn exhibits massive ``in gap'' states containing about 0.1 ele…

Materials scienceCondensed matter physicsDopingAb initioElectronic structureengineering.materialCondensed Matter PhysicsHeusler compoundThermoelectric materialsElectronic Optical and Magnetic MaterialsAb initio quantum chemistry methodsElectrical resistivity and conductivitySeebeck coefficientengineeringPhysical Review B
researchProduct

Tuning the carrier concentration for thermoelectrical application in the quaternary Heusler compound Co2TiAl(1−x)Six

2010

The family of half-metallic ferromagnets Co2TiZ exhibits exceptional transport properties. The investigated compounds Co2TiAl(1−x)Six (x = 0.25, 0.5, 0.75) show Curie temperatures (TCs) that vary between 250 and 350 K, depending on the composition. Above TC the Seebeck coefficient remains constant. This makes them promising candidates for thermoelectric devices such as thermocouples with a tunable working range. The electrical resistivity data show an anomaly at TC which is attributed to changes in the electronic structure and therefore in the carrier concentration.

Materials scienceCondensed matter physicsMechanical EngineeringMetals and AlloysElectronic structureengineering.materialCondensed Matter PhysicsThermoelectric materialsHeusler compoundFerromagnetismMechanics of MaterialsThermocoupleElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectengineeringGeneral Materials ScienceScripta Materialia
researchProduct

Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications

2010

We investigate the phase separation of the solid solution CoTi(1−x)MnxSb into the two Heusler compounds CoTiSb and CoMnSb. Energy-dispersive X-ray spectroscopy measurements on the two-phase material reveal the presence of size- and shape-tunable CoTiSb regions in a CoMnSb matrix. We demonstrate that the formed phase and grain boundaries have a considerable influence on the phonon scattering processes, which leads to a reduction in the thermal conductivity by a factor of three compared to single-phase CoTiSb.

Materials scienceCondensed matter physicsPhonon scatteringMechanical EngineeringMetallurgyMetals and Alloysengineering.materialCondensed Matter PhysicsThermoelectric materialsHeusler compoundThermal conductivityMechanics of MaterialsPhase (matter)Thermoelectric effectengineeringGeneral Materials ScienceGrain boundarySolid solutionScripta Materialia
researchProduct

Enhanced Debye level in nano Zn1+xSb, FeSb2, and NiSb: Nuclear inelastic spectroscopy on121Sb

2014

The121 Sb partial density of phonon states (DPS) in nanopowder antimonides were obtained with nuclear inelastic scattering on , , and NiSb prepared by a wet chemistry route. The DPS is compared with the bulk counterpart. An increase of the Debye level indicative of a decrease of the isothermal speed of sound is systematically observed. This observation reveals that the decrease in speed of sound observed in nanostructured thermoelectric materials is not restricted to sintered nanocomposites.

Materials scienceCondensed matter physicsPhononInelastic scatteringCondensed Matter PhysicsThermoelectric materialsElectronic Optical and Magnetic Materialssymbols.namesakeSpeed of soundNano-symbolsSpectroscopyWet chemistryDebyephysica status solidi (b)
researchProduct

Optimum Carrier Concentration in n-Type PbTe Thermoelectrics

2014

Taking La- and I-doped PbTe as an example, the current work shows the effects of optimizing the thermoelectric figure of merit, zT, by controlling the doping level. The high doping effectiveness allows the carrier concentration to be precisely designed and prepared to control the Fermi level. In addition to the Fermi energy tuning, La-doping modifies the conduction band, leading to an increase in the density of states effective mass that is confirmed by transport, infrared reflectance and hard X-ray photoelectron spectroscopy measurements. Taking such a band structure modification effect into account, the electrical transport properties can then be well-described by a self-consistent single…

Materials scienceCondensed matter physicsRenewable Energy Sustainability and the EnvironmentDopingFermi levelFermi energyAtmospheric temperature rangeThermoelectric materialsCondensed Matter::Materials Sciencesymbols.namesakeEffective mass (solid-state physics)symbolsDensity of statesCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceElectronic band structureAdvanced Energy Materials
researchProduct

Tailoring of the electrical and thermal properties using ultra-short period non-symmetric superlattices

2016

Thermoelectric modules based on half-Heusler compounds offer a cheap and clean way to create eco-friendly electrical energy from waste heat. Here we study the impact of the period composition on the electrical and thermal properties in non-symmetric superlattices, where the ratio of components varies according to (TiNiSn)���:(HfNiSn)���������, and 0 ��� n ��� 6 unit cells. The thermal conductivity (��) showed a strong dependence on the material content achieving a minimum value for n = 3, whereas the highest value of the figure of merit ZT was achieved for n = 4. The measured �� can be well modeled using non-symmetric strain relaxation applied to the model of the series of thermal resistanc…

Materials scienceCondensed matter physicsThermal resistancelcsh:BiotechnologyRelaxation (NMR)General Engineering02 engineering and technology021001 nanoscience & nanotechnologyThermoelectric materials01 natural scienceslcsh:QC1-999Thermal conductivityThermoelectric generatorElectrical resistivity and conductivitylcsh:TP248.13-248.650103 physical sciencesThermoelectric effectFigure of meritGeneral Materials Science010306 general physics0210 nano-technologylcsh:Physics
researchProduct