6533b85efe1ef96bd12bf371

RESEARCH PRODUCT

Enhanced thermoelectric properties of lightly Nb doped SrTiO3 thin films

Marisol Martín-gonzálezGerhard JakobEmigdio Chavez-angelC. M. Sotomayor TorresS. BhansaliBegoña AbadJosé SantisoArindom ChatterjeeW. Khunsin

subject

Materials scienceBioengineering02 engineering and technology010402 general chemistryMaximum power factor01 natural scienceschemistry.chemical_compoundVan der Pauw methodSeebeck coefficientThermoelectric effectFigure of meritGeneral Materials ScienceHigh-resolution transmission electron microscopyDoping concentrationLanthanum Strontium AluminateThermo-Electric materialsbusiness.industryDopingGeneral EngineeringThermoelectric figure of meritGeneral Chemistry021001 nanoscience & nanotechnologyThermoelectric materialsAtomic and Molecular Physics and Optics0104 chemical scienceschemistryThermoelectric propertiesStrontium titanateOptoelectronicsDifferent substratesSeebeck coefficient measurement0210 nano-technologybusiness

description

Novel thermoelectric materials developed for operation at room temperature must have similar or better performance along with being as ecofriendly as those commercially used, e.g., BiTe, in terms of their toxicity and cost. In this work, we present an in-depth study of the thermoelectric properties of epitaxial Nb-doped strontium titanate (SrTiNbO) thin films as a function of (i) doping concentration, (ii) film thickness and (iii) substrate type. The excellent crystal quality was confirmed by high resolution transmission electron microscopy and X-ray diffraction analysis. The thermoelectric properties were measured by the three-omega method (thermal conductivity) and van der Pauw method (electrical resistivity), complemented by Seebeck coefficient measurements. A maximum power factor of 8.9 × 10 W m K and a thermoelectric figure of merit of 0.49 were measured at room temperature in 50 nm-thick films grown on lanthanum strontium aluminate. The mechanisms behind this high figure of merit are discussed in terms of a possible two-dimensional electron gas, increase of the effective mass of the electrons, electron filtering and change in strain due to different substrates. The overall enhancement of the thermoelectric properties suggests that SrTiNbO is a very promising n-type candidate for room- to high-temperature applications.

https://ddd.uab.cat/record/223233