Search results for "tight junction"

showing 10 items of 74 documents

Aquaporins and Brain Tumors

2016

Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization …

0301 basic medicinePathologymedicine.medical_specialtyAngiogenesisAquaporinReviewBiologyBlood–brain barrieraquaporins (AQPs)Catalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesglioblastoma multiforme0302 clinical medicineEdemaGliomaSettore BIO/10 - Biochimicaaquaporins (AQPs); blood–brain barrier (BBB); brain tumors; extracellular vesicles (EVs); glioblastoma multiformemedicineBiomarkers TumorAnimalsHumansPhysical and Theoretical ChemistrySettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5Molecular BiologySpectroscopyTight junctionBrain NeoplasmsSettore MED/27 - NeurochirurgiaOrganic ChemistryCancerGeneral Medicinemedicine.diseaseblood–brain barrier (BBB)Computer Science ApplicationsEndothelial stem cell030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Blood-Brain Barrierbrain tumorsmedicine.symptomextracellular vesicles (EVs)Glioblastoma030217 neurology & neurosurgerybrain tumor
researchProduct

Electron Microscopic Contrast of the Cytoskeleton and Junctional Complexes of Intestinal Epithelial Cells by Ethanolic Phosphotungstic Acid

2000

After glutaraldehyde fixation and treatment with ethanolic phosphotungstic acid (E-PTA) before plastic embedding, sections of rat large intestine showed a characteristic electron contrasting pattern in epithelial cells. The axis of microvilli, terminal web, a thin band below the luminal plasma membrane, centrioles and junctional complexes (tight junctions, adherens junctions, and desmosomes) appeared highly contrasted. In addition to protein components of microfilaments and intermediate filaments, proteins from the junctional complexes could also be implicated in the contrasting reaction with E-PTA. Mitochondrial membranes, chromatin masses, and nucleoli of enterocytes showed considerable e…

Tissue FixationBiologyMicrofilamentSpecimen HandlingAdherens junctionTerminal webGlycocalyxchemistry.chemical_compoundAnimalsIntestine LargePhosphotungstic acidIntestinal MucosaRats WistarCytoskeletonIntermediate filamentCytoskeletonEthanolMicrovilliStaining and LabelingTissue EmbeddingTight junctionEpithelial CellsPhosphotungstic AcidAgricultural and Biological Sciences (miscellaneous)ChromatinMitochondriaRatsCell biologySolutionsMicroscopy ElectronIntercellular JunctionschemistrySolventsAnatomyCell NucleolusEuropean Journal of Morphology
researchProduct

Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Press…

2020

Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth…

0301 basic medicineelevated pressureBlotting WesternVimentinReal-Time Polymerase Chain ReactionOccludinRetinaTight JunctionsAdherens junctionMice03 medical and health scienceschemistry.chemical_compoundOrgan Culture Techniques0302 clinical medicineAntigens CDOccludinmedicinecell signalingAnimalscell contactsEye Proteinscdc42 GTP-Binding ProteinReceptorretina explantsmousebeta CateninRetinabiologyTight junctionGlial fibrillary acidic proteinChemistryGlaucomaRetinalAdherens JunctionsProtein-Tyrosine KinasesCadherinsImmunohistochemistryCell biologyMice Inbred C57BLAtmospheric Pressure030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisZonula Occludens-1 Proteinbiology.proteinInvestigative Opthalmology & Visual Science
researchProduct

Mechanistic basis for unexpected bioavailability enhancement of polyelectrolyte complexes incorporating BCS class III drugs and carrageenans

2013

The objective of this study was to investigate the potential of λ-carrageenan to work as an absorption modifying excipient in combination with formulations of BCS class 3 substances. Trospium chloride was used as a model BCS class 3 substance. Polyelectrolyte complexes of trospium and λ-carrageenan were produced by layer-by-layer complexation. A λ-carrageenan-containing formulation was administered either in capsules size 9 to rats by gavage or directly into ligated intestinal loops of rats. Exceptionally strong variations were observed in the plasma concentrations of the rats that received λ-carrageenan compared to the control group, but enhanced plasma concentrations were observed only in…

MaleCell Membrane PermeabilityNortropanesBiological AvailabilityPharmaceutical ScienceExcipientMuscarinic AntagonistsAbsorption (skin)In Vitro TechniquesBenzilatesCarrageenanTight JunctionsElectrolyteschemistry.chemical_compoundMucoadhesionmedicineAnimalsHumansIntestinal MucosaRats WistarDrug CarriersChromatographyUssing chamberReproducibility of ResultsGeneral MedicinePermeationPolyelectrolyteRatsCarrageenanBioavailabilityMucusJejunumIntestinal AbsorptionSolubilitychemistryCaco-2 CellsBiotechnologymedicine.drugEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

Side-specific effects by cadmium exposure: Apical and basolateral treatment in a coculture model of the blood–air barrier

2010

Cadmium (Cd{sup 2+}) is a widespread environmental pollutant, which is associated with a wide variety of cytotoxic and metabolic effects. Recent studies showed that intoxication with the heavy metal most importantly targets the integrity of the epithelial barrier. In our study, the lung epithelial cell line, NCI H441, was cultured with the endothelial cell line, ISO-HAS-1, as a bilayer on a 24-well HTS-Transwell (registered) filter plate. This coculture model was exposed to various concentrations of CdCl{sub 2}. The transepithelial electrical resistance decreased on the apical side only after treatment with high Cd{sup 2+} concentrations after 48 h. By contrast, a breakdown of TER to less t…

Time FactorsCell SurvivalToxicologyTight JunctionsProinflammatory cytokineAlveolar cellsCadmium ChlorideCell Line TumorElectric ImpedancemedicineHumansViability assayRespiratory systemFragmentation (cell biology)Cell ShapePharmacologyBlood-Air BarrierDose-Response Relationship DrugChemistryCell PolarityEndothelial CellsEpithelial CellsBlood–air barrierAdherens JunctionsMolecular biologyCoculture TechniquesEndothelial stem cellmedicine.anatomical_structureCytoprotectionImmunologyCytokinesCalciumInflammation MediatorsIntracellularToxicology and Applied Pharmacology
researchProduct

An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors.

2019

A one-two, CAR-T cell punch Chimeric antigen receptor (CAR)–T cells have been clinically effective in killing certain hematological malignancies, but achieving long-term patient responses for solid tumors remains a challenge. Reinhard et al. describe a two-part “CARVac” strategy to overcome poor CAR-T cell stimulation and responses in vivo. They introduce the tight junction protein claudin 6 (CLDN6) as a new CAR-T cell target and designed a nanoparticulate RNA vaccine encoding a chimeric receptor directed toward CLDN6. This lipoplex RNA vaccine promotes CLDN6 expression on the surface of dendritic cells, which in turn stimulates and enhances the efficacy of CLDN6-CAR-T cells for improved tu…

medicine.medical_treatmentT-LymphocytesCellCancer VaccinesImmunotherapy AdoptiveMiceAntigenmedicineAnimalsHumansClaudinB cellMice Inbred BALB CVaccines SyntheticMultidisciplinaryReceptors Chimeric AntigenTight junctionChemistryRNAImmunotherapyChimeric antigen receptorMice Inbred C57BLmedicine.anatomical_structureClaudinsCancer researchRNAFemaleScience (New York, N.Y.)
researchProduct

Anesthesia for Euthanasia Influences mRNA Expression in Healthy Mice and after Traumatic Brain Injury

2014

Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperi…

business.industryAnesthetics GeneralChloral hydrateInterleukinOriginal ArticlesReal-Time Polymerase Chain ReactionMedetomidineDisease Models AnimalMiceIsofluraneEuthanasia AnimalAnesthesiaTight junction protein 1Animals LaboratoryBrain InjuriesAnestheticmedicineAnimalsTumor necrosis factor alphaNeurology (clinical)RNA Messengerbusinessmedicine.drugFOSB
researchProduct

Physical origin of Na+/Cl− selectivity of tight junctions between epithelial cells. Nonlocal electrostatic approach

2020

Abstract Tight junctions (TJs) of epithelial cells play a key role in regulation of the ion exchange between NaCl solutions separated by the layer of these cells. Their functioning is based on a strong difference in the permeabilities of these channels for Na+ and Cl− ion migrational fluxes owing to specific properties of the protein network inside TJs. It has been assumed in this study that this phenomenon originates from combination of two effects related to this specific TJ protein (claudin) which segments are partially located inside the TJ space. First, their ionogenic groups create a negative charge distributed inside TJs, thus inducing a difference between the Na+ and Cl− concentrati…

Aqueous solutionIon exchangeTight junctionChemistrySolvation02 engineering and technologyDielectric010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectrostatics01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsIonChemical physicsMaterials ChemistryMolecule[CHIM]Chemical SciencesPhysical and Theoretical Chemistry0210 nano-technologySpectroscopy
researchProduct

Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells

2021

Tight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions. After a brief presentation of the organization and modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to permeability breakdown of the gut barrier as a consequence of tight junctions’ attack by pathogens, including…

0301 basic medicineCell Membrane Permeabilitytight junction030106 microbiologyReviewBiologyInfectionsCatalysisTight JunctionsInorganic Chemistrylcsh:Chemistry03 medical and health sciencesIntestinal mucosaAnimalsHumansPhysical and Theoretical ChemistryIntestinal MucosamicroorganismsMolecular Biologylcsh:QH301-705.5SpectroscopyGut barrierTight junctionBacteriagut barrierOrganic ChemistryEpithelial CellspathogensGeneral Medicinesignaling pathwaysComputer Science ApplicationsCell biologyIntestinal Diseases030104 developmental biologylcsh:Biology (General)lcsh:QD1-999enterocytesintestinal epithelial cellsSignal transductionpermeabilitySignal TransductionInternational Journal of Molecular Sciences
researchProduct

Blockade of Pannexin-1 Channels and Purinergic P2X7 Receptors Shows Protective Effects Against Cytokines-Induced Colitis of Human Colonic Mucosa

2018

Introduction: The pannexin-1 (Panx1) channels are found in many cell types, and ATP released from these channels can act on nearby cells activating purinergic P2X7 receptors (P2X7R) which lead to inflammation. Although Panx1 and P2X7R are implicated in the process of inflammation and cell death, few studies have looked at the role they play in inflammatory bowel disease in human. Hence, the aim of the present study was to investigate the function of Panx1 and P2X7R in an ex vivo colitis model developed from human colonic mucosal explants.Materials and Methods: Healthy human colonic mucosal strips (4 × 10 mm) were incubated in carbogenated culture medium at 37°C for 16 h. Proinflammatory cyt…

0301 basic medicinemedicine.medical_specialtytissue explantsCryptInflammationInflammatory bowel diseasecolonic inflammationProinflammatory cytokine03 medical and health sciencesInternal medicinemedicinePharmacology (medical)ColitisOriginal ResearchPharmacologyTight junctionChemistrylcsh:RM1-950Purinergic receptorpannexin-1medicine.diseaselcsh:Therapeutics. Pharmacology030104 developmental biologyEndocrinologyP2X7 receptorhuman colitisTumor necrosis factor alphamedicine.symptomFrontiers in Pharmacology
researchProduct