Search results for "toc"

showing 10 items of 14693 documents

The effect of magnetocrystalline anisotropy on the domain structure of patterned Fe2CrSi Heusler alloy thin films

2013

The effects of magnetic anisotropy on domain structures in half-metallic Heusler alloy Fe2CrSi thin film elements were investigated using high resolution x-ray magnetic circular dichroism photoemission electron microscopy. The transition of the dominating contribution from the magnetocrystalline anisotropy to the shape anisotropy is observed in square-shaped elements when reducing the size below 2.0–2.5 μm. In particular, we identify in disk-shaped Heusler elements the vortex state as the ground state. The shape-anisotropy dominated, well-defined magnetization configuration shows the potential of the Fe2CrSi Heusler alloy for applications in vortex-core- or domain-wall-devices, where the hi…

010302 applied physicsMaterials scienceMagnetic domainSpin polarizationCondensed matter physics530 PhysicsGeneral Physics and Astronomy02 engineering and technology530 Physik021001 nanoscience & nanotechnologyMagnetocrystalline anisotropy01 natural sciencesVortex stateCondensed Matter::Materials ScienceMagnetic anisotropyMagnetizationMagnetic shape-memory alloy0103 physical sciences0210 nano-technologyAnisotropyJ. Appl. Phys. 114, 073905 (2013)
researchProduct

Recent progress in understanding the persistent luminescence in SrAl 2 O 4 :Eu,Dy

2019

Ever since the discovery of SrAl2O4:Eu,Dy persistent afterglow material, that can intensively glow up to 20 h, the mechanism of long-lasting luminescence has been a popular area of research. The re...

010302 applied physicsMaterials scienceMechanical EngineeringStrontium aluminate02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsPhotochemistry01 natural sciences3. Good healthAfterglowchemistry.chemical_compoundPersistent luminescencechemistryMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyLuminescenceMechanism (sociology)Materials Science and Technology
researchProduct

Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering

2018

Abstract ZnO thin films were deposited by home-made DC sputtering of zinc target under mixed gases (Argon, Oxygen) plasma on glass substrates. Films were deposited by varying oxygen partial pressure (PO2) from 0.09 to 1.3 mbar in the deposition chamber, at a fixed substrate temperature of 100 °C. The samples were characterized by photoluminescence (PL), X-ray diffraction (XRD), optical transmissions (UV–vis), scanning electron microscopy (SEM) and electrical (Hall effect) measurements. The results indicate that by varying the oxygen pressure in the deposition chamber, the films show a precise and well defined photoluminescence emissions for each range of pressure covering almost the entire …

010302 applied physicsMaterials sciencePhotoluminescenceZnO thin films Sputtering Photoluminescence Rhodamine (B) Solar light PhotocatalysisScanning electron microscopeBand gapAnalytical chemistry02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistrySputtering0103 physical sciencesPhotocatalysisRhodamine BElectrical and Electronic EngineeringThin film0210 nano-technology
researchProduct

Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4

2018

010302 applied physicsMaterials scienceReading (process)media_common.quotation_subject0103 physical sciencesPhotocatalysisNanotechnology02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesmedia_commonFrontier Research Today
researchProduct

Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg

2019

Abstract The results of the investigation of thermostimulated luminescence (TSL) and photoconductivity (PC) of the X-ray irradiated undoped and Mg2+ doped β-Ga2O3 single crystals are presented. Three low-temperature peaks at 116 K, 147 K and 165 K are observed on the TSL glow curves of undoped crystals. The high-temperature TSL peaks at 354 K and 385 K are dominant in Mg2+ doped crystals. The correlation between doping with Mg2+ ions and the local energy levels of the intrinsic structural defects of β-Ga2O3, which are responsible for the TSL peaks and PC, is established. The nature of TSL peaks and the appropriate photoconductivity excitation bands are discussed.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhotoconductivityDopingAnalytical chemistryX-ray02 engineering and technologyActivation energy021001 nanoscience & nanotechnology01 natural sciencesIon0103 physical sciencesIrradiation0210 nano-technologyLuminescenceInstrumentationSingle crystalNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The peculiarities of the radiation damage accumulation kinetics in the case of defect complex formation

2020

Abstract The kinetics of radiation defect accumulation under irradiation by heavy particles is theoretically analysed under the assumption of defect complex genesis, particularly, the ones of anion and cation vacancies. The obtained analytical mathematical model and revealed peculiarities of radiation dose dependencies can be used for analysis of the experimental results for different crystalline materials for solid-state electronics and photonics.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industryComplex formationRadiation doseKinetics02 engineering and technologyRadiation021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesIon0103 physical sciencesRadiation damageIrradiationPhotonics0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Dielectric properties of potassium–sodium niobate ceramics at low frequencies

2016

ABSTRACTA study of the effects of ageing history on the electrical properties of lead-free ferroelectric ceramics of (K0.5Na0.5)(Nb1−xSbx)O3 + 0.5 mol% MnO2 and (K0.5Na0.5)(Nb1−xTax)O3 + 0.5 mol%MnO2 for x = 0.05 is reported. The samples after storage at a constant temperature have been subject to infra-low-frequency electric field and radiation. Differences of the photoelectric response between the two examined compounds were found and the restoration of polarisation in the aged ceramic materials by cycles of applied field is discussed.

010302 applied physicsPhotocurrentMaterials sciencebusiness.industryFerroelectric ceramicsAnalytical chemistry02 engineering and technologyDielectricPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityOpticsvisual_artElectric field0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceIrradiationCeramic0210 nano-technologybusinessInstrumentationPhase Transitions
researchProduct

Luminescence dynamics of hybrid ZnO nanowire/CdSe quantum dot structures

2016

Colloidal CdSe quantum dots (QDs) functionalized with different organic linker molecules are attached to ZnO nanowires (NWs) to investigate the electron transfer dynamics between dots and wires. After linking the quantum dots to the nanowires, the photo-induced electron transfer (PET) from the QDs into the NWs becomes visible in the PL transients by a decrease of dot luminescence decay time. The different recombination paths inside the QDs and the PET process are discussed in the framework of a rate equation model. Photoconductivity studies confirm the electron transfer by demonstrating a strong enhancement of the wire photocurrent under light irradiation into the dot transition. (© 2016 WI…

010302 applied physicsPhotocurrentPhotoluminescenceMaterials sciencebusiness.industryPhotoconductivityNanowire02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectron transferQuantum dot0103 physical sciencesOptoelectronics0210 nano-technologybusinessLuminescencephysica status solidi c
researchProduct

Unusual domain-wall motion in ferromagnetic semiconductor films with tetragonal anisotropy

2009

International audience; Magnetic field-driven domain-wall propagation in the flow regime is investigated in (Ga, Mn) As ferromagnetic semiconductor layers. Square-shape magnetic domains with an unexpected orientation of their edges, at pi/8 with respect to the anisotropy axes, are found. This is shown to arise from the effect of tetragonal magnetic anisotropy on domain-wall dynamics. Using a one-dimensional model for domain-wall motion and modeling domain growth by contour dynamics the shape and orientation of domains and their field range for existence are well reproduced. These results point to the key role of the vectorial nature of the order parameter in the dynamics of ferromagnetic do…

010302 applied physicsPhysicsCondensed matter physicsMagnetic domainDemagnetizing fieldCondensed Matter PhysicsMagnetocrystalline anisotropy01 natural sciencesMagnetic susceptibilityElectronic Optical and Magnetic MaterialsMagnetic anisotropyDomain wall (magnetism)Magnetic shape-memory alloy0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Single domain010306 general physicsPhysical Review B
researchProduct

Defect-induced blue luminescence of hexagonal boron nitride

2016

Abstract Native defect-induced photoluminescence around 400 nm (blue luminescence - BL) was studied in hBN materials with different size and various origins. The following spectral characterizations were used: spectra of luminescence and its excitation, luminescence dependence on temperature, luminescence kinetics, optically stimulated luminescence and infrared absorption. It was found, that the BL is characteristic for all these materials, which were studied. The BL forms a wide, asymmetric and phonon-assisted emission band at 380 nm. This luminescence can be excited either through the exciton processes, or with light from two defect-induced excitation bands at 340 nm and 265 nm. It was fo…

010302 applied physicsQuenching (fluorescence)Materials sciencePhotoluminescenceOptically stimulated luminescencebusiness.industryMechanical EngineeringExcitonInfrared spectroscopy02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesElectronic Optical and Magnetic MaterialsExcited stateVacancy defect0103 physical sciencesMaterials ChemistryOptoelectronicsElectrical and Electronic Engineering0210 nano-technologybusinessLuminescenceDiamond and Related Materials
researchProduct