Search results for "top"
showing 10 items of 17685 documents
An invasive species, Carassius gibelio, alters the native fish community through trophic niche competition
2019
Carbon and nitrogen stable isotope analyses were used to determine isotopic niche width of the invasive fish species Carassius gibelio to help assess the niche overlap and potential impact of this species on the native fish fauna in the Karamenderes River, northwest Turkey. C. gibelio had the highest niche area of the coexisting species. The greatest overlap of isotopic niche was between C. gibelio and Mugil cephalus in the river mouth. The freshwater species displayed similar patterns when taking into consideration their relative abundance and isotopic overlap. While C. gibelio is likely to outcompete some species at some localities, the species was found co-occurring with others by maximu…
Deciphering carbon sources of mussel shell carbonate under experimental ocean acidification and warming.
2018
Abstract Ocean acidification and warming is widely reported to affect the ability of marine bivalves to calcify, but little is known about the underlying mechanisms. In particular, the response of their calcifying fluid carbonate chemistry to changing seawater carbonate chemistry remains poorly understood. The present study deciphers sources of the dissolved inorganic carbon (DIC) in the calcifying fluid of the blue mussel (Mytilus edulis) reared at two pH (8.1 and 7.7) and temperature (16 and 22 °C) levels for five weeks. Stable carbon isotopic ratios of seawater DIC, mussel soft tissues and shells were measured to determine the relative contribution of seawater DIC and metabolically gener…
Effect of Intensity and Mode of Artificial Upwelling on Particle Flux and Carbon Export
2021
Reduction of anthropogenic CO2 emissions alone will not sufficiently restrict global warming and enable the 1.5°C goal of the Paris agreement to be met. To effectively counteract climate change, measures to actively remove carbon dioxide from the atmosphere are required. Artificial upwelling has been proposed as one such carbon dioxide removal technique. By fueling primary productivity in the surface ocean with nutrient-rich deep water, it could potentially enhance downward fluxes of particulate organic carbon (POC) and carbon sequestration. In this study we investigated the effect of different intensities of artificial upwelling combined with two upwelling modes (recurring additions vs. on…
Stochastic models for phytoplankton dynamics in Mediterranean Sea
2016
Abstract In this paper, we review some results obtained from three one-dimensional stochastic models, which were used to analyze picophytoplankton dynamics in two sites of the Mediterranean Sea. Firstly, we present a stochastic advection–reaction–diffusion model to describe the vertical spatial distribution of picoeukaryotes in a site of the Sicily Channel. The second model, which is an extended version of the first one, is used to obtain the vertical stationary profiles of two groups of picophytoplankton, i.e. Pelagophytes and Prochlorococcus, in the same marine site as in the previous case. Here, we include intraspecific competition of picophytoplanktonic groups for limiting factors, i.e.…
The stoichiometry of particulate nutrients in Lake Tanganyika — implications for nutrient limitation of phytoplankton
1999
We studied the potential nutrient limitation of phytoplankton by means of seston nutrient stoichiometry and nutrient enrichment bioassays in the epilimnion of Lake Tanganyika. In most cases, the particulate carbon to phosphorus (C:P) ratio was high and indicated moderate P deficiency, while the respective C:N ratio mainly suggested moderate N deficiency. The N:P ratios of seston indicated rather balanced N and P supply. In three two-day enrichment bioassays in April—May 1995, a combined addition of P, N and organic carbon (glucose) always increased primary production in comparison to untreated controls. Primary production also slightly increased after the addition of phosphate-P, while the …
Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes
2006
We tested the hypothesis that low stable carbon isotope (δ13C) values commonly observed for zooplankton in humic lakes are due to their feeding on isotopically light methane-oxidizing microbes, and thus that methane-derived carbon is important in the food webs of these lakes. In replicate laboratory cultures, Daphnia longispina, a common crustacean zooplankter in humic lakes, were fed microbial suspensions with or without enrichment by biogenic methane. The δ13C values of Daphnia indicated consumption of 13C-depleted methanotrophic bacteria, while growth rates, survival, and reproduction of Daphnia in cultures enriched with methane were equal to or greater than those in nonenriched cultures…
Phytoplankton distribution in Mar Menor coastal lagoon (SE Spain) during 2017.
2020
The Mar Menor is a Spanish coastal lagoon of great ecological and economic interest. The agricultural and tourist activities developed in the surroundings of the lagoon, together with the modifications in its channels of connection with the Mediterranean Sea, have notably affected the quality of its waters, which is altering the natural balance of the ecosystem. In this work, an analysis of the density of phytoplankton present in the lagoon between the months of May to December 2017 was carried out. The results indicate a significant increase in phytoplankton density between 2500 and 67,300 cells/mL compared to previous data of 1981 (between 10 and 500 cells/mL). Concentration of Chlorophyl…
Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs
2017
Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ13C values) of particulate organic matter, Chironomidae andDaphniaspp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ13C measurements of chironomid andDaphniaremains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availabili…
Drivers of shell growth of the bivalve, Callista chione (L. 1758) - Combined it environmental and biological factors
2018
WOS:000426027100014; Seasonal shell growth patterns were analyzed using the stable oxygen and carbon isotope values of live-collected specimens of the bivalve Callista chione from two sites in the Adriatic Sea (Pag and Cetina, Croatia). Micromilling was performed on the shell surface of three shells per site and shell oxygen isotopes of the powder samples were measured. The timing and rate of seasonal shell growth was determined by aligning the delta O-18(shell)-derived temperatures so that the best fit was achieved with the instrumental temperature curve. According to the data, shells grew only at very low rates or not at all during the winter months, i.e., between January and March. Shell…
Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach
2017
The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large-sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom-dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid-water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon …