Search results for "traktorit"

showing 10 items of 14 documents

Hidden and self-excited attractors in radiophysical and biophysical models

2017

One of the central tasks of investigation of dynamical systems is the problem of analysis of the steady (limiting) behavior of the system after the completion of transient processes, i.e., the problem of localization and analysis of attractors (bounded sets of states of the system to which the system tends after transient processes from close initial states). Transition of the system with initial conditions from the vicinity of stationary state to an attractor corresponds to the case of a self-excited attractor. However, there exist attractors of another type: hidden attractors are attractors with the basin of attraction which does not have intersection with a small neighborhoods of any equ…

Chua circuitskaaosteoriapancreatic beta-cellvirtapiiritattraktoritradiophysical generatoroskillaattoritbiofysiikkaNonlinear Sciences::Chaotic Dynamicshidden attractorsbifurkaatiosäteilyfysiikkamultistabilityself-excited attractorskatastrofiteoriamatemaattiset mallitdifferentiaaliyhtälöt
researchProduct

Analytical-numerical methods for finding hidden oscillations in dynamical systems

2012

Chua's circuithidden attractorselektroniset piiritChuan piiriattraktoritdynaamiset systeemitlocalizationoskillaattoritlaskentamenetelmät
researchProduct

Coupled Discrete Fractional-Order Logistic Maps

2021

This paper studies a system of coupled discrete fractional-order logistic maps, modeled by Caputo’s delta fractional difference, regarding its numerical integration and chaotic dynamics. Some interesting new dynamical properties and unusual phenomena from this coupled chaotic-map system are revealed. Moreover, the coexistence of attractors, a necessary ingredient of the existence of hidden attractors, is proved and analyzed.

General Mathematicscaputo delta fractional differenceChaoticattraktoritstabilityStability (probability)fractional-order difference equationNumerical integrationNonlinear Sciences::Chaotic DynamicsAttractorQA1-939Computer Science (miscellaneous)Applied mathematicsOrder (group theory)dynaamiset systeemitEngineering (miscellaneous)Mathematicsdiscrete fractional-order systemhidden attractorMathematicsMathematics
researchProduct

Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents

2021

Cyclicity and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global at…

Lyapunov functionGeneral MathematicsChaoticFOS: Physical sciencesGeneral Physics and AstronomyattraktoritAbsorbing set (random dynamical systems)Lyapunov exponentInstabilitysymbols.namesakeDimension (vector space)AttractorApplied mathematicsEntropy (information theory)taloudelliset mallitdynaamiset systeemitMathematicskaaosteoriaApplied MathematicsLyapunov exponentstaloudelliset ennusteetkausivaihtelutStatistical and Nonlinear PhysicsAbsorbing setNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsMid-size firm modelLyapunov dimensionsymbolsUnstable periodic orbitChaotic Dynamics (nlin.CD)Chaos, Solitons & Fractals
researchProduct

Hidden Strange Nonchaotic Attractors

2021

In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the bifurcation parameter, the hidden attractor is manifestly fractal with aperiodic dynamics, and even the finite-time largest Lyapunov exponent, a measure of trajectory separation with nearby initial conditions, is negative. To verify these characteristics numerically, the finite-time Lyapunov exponents, ‘0-1’ test, power spectra density, and recurrence plot are used. Beside the considered hidden strange nonchaotic attractor, a self-excited chaotic attractor and a quasiperiodic at…

Mathematics::Dynamical SystemsGeneral MathematicsChaoticattraktoritLyapunov exponenthidden chaotic attractor01 natural sciencesStrange nonchaotic attractor010305 fluids & plasmassymbols.namesakeFractalRabinovich–Fabrikant system0103 physical sciencesAttractorComputer Science (miscellaneous)Statistical physicsdynaamiset systeemitRecurrence plot010301 acousticsEngineering (miscellaneous)BifurcationPhysicskaaosteorialcsh:Mathematicslcsh:QA1-939strange nonchaotic attractorself-excited attractorNonlinear Sciences::Chaotic DynamicsQuasiperiodic functionsymbolsfraktaalitMathematics
researchProduct

Hidden attractors and multistability in a modified Chua’s circuit

2021

The first hidden chaotic attractor was discovered in a dimensionless piecewise-linear Chua’s system with a special Chua’s diode. But designing such physical Chua’s circuit is a challenging task due to the distinct slopes of Chua’s diode. In this paper, a modified Chua’s circuit is implemented using a 5-segment piecewise-linear Chua’s diode. In particular, the coexisting phenomena of hidden attractors and three point attractors are noticed in the entire period-doubling bifurcation route. Attraction basins of different coexisting attractors are explored. It is demonstrated that the hidden attractors have very small basins of attraction not being connected with any fixed point. The PSIM circui…

Nonlinear Sciences::Chaotic Dynamicsinitial conditionkaaosteoriaChua’s circuitChua’s diodechaosmultistabilityelektroniset piiritattraktoritmatemaattiset mallitdynaamiset systeemitattraction basinhidden attractor
researchProduct

Hidden attractors in dynamical systems

2016

Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors whi…

Nonlinear Sciences::Chaotic Dynamicsnonlinear dynamicsmultistabilityattraktoritbasins of attraction
researchProduct

Kulkine.net : tutkimus epävirallisista kulkineennimistä

2013

autotlempinimetkulkuvälineetsuomen kieliautomerkittraktoritsemantiikkanimitykset
researchProduct

Attractor as a convex combination of a set of attractors

2021

This paper presents an effective approach to constructing numerical attractors of a general class of continuous homogenous dynamical systems: decomposing an attractor as a convex combination of a set of other existing attractors. For this purpose, the convergent Parameter Switching (PS) numerical method is used to integrate the underlying dynamical system. The method is built on a convergent fixed step-size numerical method for ODEs. The paper shows that the PS algorithm, incorporating two binary operations, can be used to approximate any numerical attractor via a convex combination of some existing attractors. Several examples are presented to show the effectiveness of the proposed method.…

continuous-time systemnumeeriset menetelmätMathematicsofComputing_NUMERICALANALYSISnumerical attractorattraktoritdynaamiset systeemitapproksimointiparameter switching
researchProduct

Hidden attractors in Chua circuit: mathematical theory meets physical experiments

2022

AbstractAfter the discovery in early 1960s by E. Lorenz and Y. Ueda of the first example of a chaotic attractor in numerical simulation of a real physical process, a new scientific direction of analysis of chaotic behavior in dynamical systems arose. Despite the key role of this first discovery, later on a number of works have appeared supposing that chaotic attractors of the considered dynamical models are rather artificial, computer-induced objects, i.e., they are generated not due to the physical nature of the process, but only by errors arising from the application of approximate numerical methods and finite-precision computations. Further justification for the possibility of a real exi…

kaaosteoriaApplied MathematicsMechanical Engineeringelektroniset piiritAerospace EngineeringattraktoritOcean EngineeringChua circuitfysikaaliset ilmiöthidden attractorsradiophysical experimentControl and Systems Engineeringmatemaattiset mallitdynaamiset systeemitElectrical and Electronic EngineeringbifurcationsNonlinear Dynamics
researchProduct