Search results for "transcription factors"

showing 10 items of 848 documents

E4BP4/NFIL3 modulates the epigenetically repressed RAS effector RASSF8 function through histone methyltransferases

2018

RAS proteins are major human oncogenes, and most of the studies are focused on enzymatic RAS effectors. Recently, nonenzymatic RAS effectors (RASSF, RAS association domain family) have garnered special attention because of their tumor-suppressive properties in contrast to the oncogenic potential of the classical enzymatic RAS effectors. Whereas most members of RASSF family are deregulated by promoter hypermethylation, RASSF8 promoter remains unmethylated in many cancers but the mechanism(s) of its down-regulation remains unknown. Here, we unveil E4BP4 as a critical transcriptional modulator repressing RASSF8 expression through histone methyltransferases, G9a and SUV39H1. In line with these …

0301 basic medicineTumor suppressor geneBreast NeoplasmsBiologyBiochemistryEpigenesis Genetic03 medical and health sciences0302 clinical medicineHistocompatibility AntigensHistone methylationHumansEpigeneticsMolecular BiologySUV39H1EffectorTumor Suppressor ProteinsNFIL3Molecular Bases of DiseaseCell BiologyHistone-Lysine N-MethyltransferaseMethyltransferasesCell biologyNeoplasm ProteinsGene Expression Regulation NeoplasticRepressor Proteins030104 developmental biologyBasic-Leucine Zipper Transcription FactorsHEK293 Cells030220 oncology & carcinogenesisHistone methyltransferaseMCF-7 CellsFemaleFunction (biology)
researchProduct

MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.

2018

The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…

0301 basic medicineUntranslated regionSmall interfering RNAPhysiologymetabolism [Microtubule Proteins]Alzheimer's DiseaseBiochemistryImmune PhysiologyMedicine and Health SciencesSmall interfering RNAsmetabolism [Transcription Factors]3' Untranslated RegionsImmune System ProteinsMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionMessenger RNAQRNuclear ProteinsNeurodegenerative DiseasesTranslation (biology)EnzymesUbiquitin ligaseCell biologyNucleic acidsNeurologyMicrotubule ProteinsMedicineOxidoreductasesLuciferasemetabolism [Nuclear Proteins]Research ArticleScienceUbiquitin-Protein LigasesImmunologyTransfectionResearch and Analysis MethodsReal-Time Polymerase Chain ReactionAntibodies03 medical and health sciencesMental Health and PsychiatrymicroRNAGeneticsHumansddc:610Non-coding RNAMolecular Biology TechniquesMolecular BiologyMessenger RNABiology and life sciencesThree prime untranslated regionHEK 293 cellsProteinsGene regulationphysiology [MicroRNAs]MicroRNAs030104 developmental biologyHEK293 CellsEnzymologybiology.proteinRNAProtein TranslationDementiaGene expressionTranscription FactorsMid1 protein human
researchProduct

GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion.

2019

Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly,…

0301 basic medicine[SDV]Life Sciences [q-bio]Cyclin ACellChick EmbryoChorioallantoic Membrane0302 clinical medicineCell MovementCyclin D1HCCbiologyNeovascularization PathologicCell DifferentiationHep G2 CellsCell cycleCadherinsHuh7 cells3. Good health[SDV] Life Sciences [q-bio]Gene Expression Regulation NeoplasticGrowth Differentiation Factorsmedicine.anatomical_structure030220 oncology & carcinogenesisBone Morphogenetic ProteinsMolecular MedicineLiver cancerCyclin-Dependent Kinase Inhibitor p27Signal Transduction[SDV.CAN]Life Sciences [q-bio]/CancerCyclin ACell cycleHep3B cells03 medical and health sciencesCyclin D1Downregulation and upregulation[SDV.CAN] Life Sciences [q-bio]/CancerAntigens CDCell Line TumorOccludinSpheroids CellularmedicineAnimalsHumansViability assayMolecular BiologyCell Proliferation[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyCyclin-Dependent Kinase 6[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology030104 developmental biologyCell cultureGDF11biology.proteinCancer researchCyclin-dependent kinase 6Snail Family Transcription FactorsBiochimica et biophysica acta. Molecular basis of disease
researchProduct

Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy

2019

Radiotherapy is a highly effective tool for the treatment of brain cancer. However, radiation also causes detrimental effects in the healthy tissue, leading to neurocognitive sequelae that compromise the quality of life of brain cancer patients. Despite the recognition of this serious complication, no satisfactory solutions exist at present. Here we investigated the effects of intranasal administration of human mesenchymal stem cells (hMSCs) as a neuroprotective strategy for cranial radiation in mice. Our results demonstrated that intranasally delivered hMSCs promote radiation-induced brain injury repair, improving neurological function. This intervention confers protection against inflamma…

0301 basic medicinecognitionmedicine.medical_treatmentneurocognitive sequelaeStem cellsBioinformaticsBrain cancer0302 clinical medicineCognitionOriginal ResearchCREBNeuroprotección:Analytical Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Radiotherapy [Medical Subject Headings]Neurocognitive sequelaeNeuroprotectionneuroprotectionmedicine.symptomStem cellCélulas madreNeoplasias encefálicas:Diseases::Neoplasms::Neoplasms by Site::Nervous System Neoplasms::Central Nervous System Neoplasms::Brain Neoplasms [Medical Subject Headings]Brain tumorInflammationNeuroprotectionlcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceRadioterapiastem cellsmedicinelcsh:Neurosciences. Biological psychiatry. Neuropsychiatry:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::Acyltransferases::Acetyltransferases::p300-CBP Transcription Factors::CREB-Binding Protein [Medical Subject Headings]radiotherapybrain cancerCogniciónRadiotherapybusiness.industryMesenchymal stem cellmedicine.diseaseequipment and suppliesIntranasal cell deliveryRadiation therapy030104 developmental biology:Anatomy::Cells::Stem Cells [Medical Subject Headings]Nasal administrationbusinessNeurocognitive030217 neurology & neurosurgeryintranasal cell deliveryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein

2019

JBC papers in press xx, 16604-16619 (2019). doi:10.1074/jbc.RA119.009845

0301 basic medicineendocrine systemCircadian clockTranscription factor complex610BiochemistryProtein Structure SecondaryProtein–protein interaction03 medical and health sciencesTransactivationMiceProto-Oncogene Proteins c-mybProtein DomainsX-Ray DiffractionCircadian ClocksScattering Small AngleAnimalsddc:610Amino Acid SequenceCREB-binding proteinMolecular BiologyTernary complexTranscription factorBinding Sites030102 biochemistry & molecular biologybiologyChemistryARNTL Transcription FactorsCell BiologyHistone-Lysine N-MethyltransferaseSurface Plasmon ResonanceCREB-Binding ProteinRecombinant ProteinsCell biologyProtein Structure Tertiary030104 developmental biologyStructural biologyProtein Structure and Foldingbiology.proteinMutagenesis Site-DirectedMyeloid-Lymphoid Leukemia ProteinProtein Binding
researchProduct

Mapping gene regulatory circuitry of Pax6 during neurogenesis.

2016

AbstractPax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that Pax6 targets a large number of promoters in neural progenitors cells. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6-binding data set with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesoderma…

0301 basic medicineendocrine systemNeurogenesisBiologyBiochemistryArticle03 medical and health sciencesSOX2GeneticsMolecular BiologyTranscription factorGeneRegulation of gene expressionGeneticsGene knockdownNeurogenesisPromoterCell BiologyNeural progenitorseye diseasesChromatinCell biologyGene regulation030104 developmental biologyPAX6sense organsTranscription FactorsCell discovery
researchProduct

Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells.

2015

Abstract Background: Unfolded protein responses (UPR) determine cell fate and are recognized as anticancer targets. In a previous research, we reported that cryptotanshinone (CPT) exerted cytotoxic effects toward acute lymphoblastic leukemia cells through mitochondria-mediated apoptosis. Purpose: In the present study, we further investigated the role of UPR in CPT-induced cytotoxicity on acute lymphoblastic leukemia cells by applying tools of pharmacogenomics and bioinformatics. Methods: Gene expression profiling was performed by mRNA microarray hybridization. Potential transcription factor binding motifs were identified in the promoter regions of the deregulated genes by Cistrome software.…

0301 basic medicineendocrine systemXBP1Eukaryotic Initiation Factor-2Pharmaceutical ScienceApoptosisBiology03 medical and health sciencesPhosphatidylinositol 3-KinasesEukaryotic initiation factorCell Line TumorDrug DiscoveryHumansheterocyclic compoundsRNA MessengerEukaryotic Initiation FactorsTranscription factorPharmacologyeIF2ATF4Computational BiologyPromoterPhenanthrenesPrecursor Cell Lymphoblastic Leukemia-LymphomaMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicineCistromePharmacogeneticsEukaryotic Initiation Factor-4AUnfolded protein responseCancer researchUnfolded Protein ResponseMolecular MedicineTranscription Factor CHOPSignal TransductionTranscription FactorsPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis.

2020

Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of …

0301 basic medicinehost immunityGenotype030106 microbiologyImmunologyPopulationCX3C Chemokine Receptor 1Single-nucleotide polymorphismARNT2 ; CX3CR1 ; genetic susceptibility; host immunity; invasive aspergillosisBiologyAspergillosisMicrobiologyPolymorphism Single NucleotideRisk Assessment03 medical and health sciencesCX3CR1GenotypemedicineGenetic predispositionBasic Helix-Loop-Helix Transcription FactorsHumansGenetic Predisposition to DiseaseARNT2AlleleeducationInvasive Pulmonary Aspergillosiseducation.field_of_studyinvasive aspergillosisHaplotypeAryl Hydrocarbon Receptor Nuclear TranslocatorPCRAGA Study Groupmedicine.diseaseHematologic Diseases3. Good healthSettore MED/15 - MALATTIE DEL SANGUE030104 developmental biologyInfectious DiseasesAspergillusCase-Control StudiesExpression quantitative trait lociImmunologyParasitologygenetic susceptibility
researchProduct

Histidine tracts in human transcription factors: insight into metal ion coordination ability

2017

Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins—MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens part…

0301 basic medicineinorganic chemicalsMaf Transcription Factors LargeStereochemistryMetal ions in aqueous solutionPeptideNerve Tissue Proteins010402 general chemistry01 natural sciencesBiochemistryInorganic ChemistryMetal03 medical and health scienceschemistry.chemical_compoundCoordination ComplexesAmideImidazoleHomeostasisHumansHistidineAmino Acid SequenceTranscription factorHistidineLigand bindingchemistry.chemical_classificationOriginal PaperMass spectrometryForkhead Transcription FactorsHydrogen-Ion ConcentrationPeptide Fragments0104 chemical sciencesZinc030104 developmental biologyBinding affinitychemistryvisual_artPeptidevisual_art.visual_art_mediumThermodynamicsHuman genomeCopperProtein BindingJournal of Biological Inorganic Chemistry
researchProduct

Hepatic B cell leukemia-3 promotes hepatic steatosis and inflammation through insulin-sensitive metabolic transcription factors.

2016

Background & Aims The pathomechanisms underlying non-alcoholic fatty liver disease (NAFLD) and the involved molecular regulators are incompletely explored. The nuclear factor-kappa B (NF-κB)-cofactor gene B cell leukemia-3 ( Bcl-3 ) plays a critical role in altering the transcriptional capacity of NF-κB – a key inducer of inflammation – but also of genes involved in cellular energy metabolism. Methods To define the role of Bcl-3 in non-alcoholic steatohepatitis (NASH), we developed a novel transgenic mouse model with hepatocyte-specific overexpression of Bcl-3 ( Bcl-3 Hep ) and employed a high-fat, high-carbohydrate dietary feeding model. To characterize the transgenic model, deep RNA seque…

0301 basic medicinemedicine.medical_specialtyCirrhosisCarcinoma Hepatocellularmedicine.medical_treatmentBiology03 medical and health sciencesLiver diseaseMice0302 clinical medicineB-Cell Lymphoma 3 ProteinInternal medicineProto-Oncogene ProteinsmedicineAnimalsHumansInsulinInflammationHepatologyInsulinLiver cellFatty liverLiver Neoplasmsmedicine.disease030104 developmental biologyEndocrinology030220 oncology & carcinogenesisLipogenesisSteatohepatitisSteatosisTranscription FactorsJournal of hepatology
researchProduct