Search results for "transgenic"

showing 10 items of 552 documents

Injury-activated glial cells promote wound healing of the adult skin in mice

2018

Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously…

0301 basic medicine10017 Institute of AnatomyGeneral Physics and AstronomyTransforming Growth Factor betaMedicinelcsh:ScienceMyofibroblastsCells CulturedSkinMice KnockoutMultidisciplinaryintegumentary systemSOXE Transcription FactorsQCell CycleCell Differentiation3100 General Physics and AstronomyCell biologyMice Inbred DBACutaneous woundMyofibroblastNeurogliaSignal TransductionMice 129 StrainScienceMice Transgenic610 Medicine & health1600 General ChemistryGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesParacrine signallingDownregulation and upregulationIn vivoFate mapping1300 General Biochemistry Genetics and Molecular BiologyAnimalsHumansEpithelial proliferationWound Healingbusiness.industryGene Expression ProfilingGeneral ChemistryMice Inbred C57BL030104 developmental biology10032 Clinic for Oncology and Hematology570 Life sciences; biologylcsh:QWound healingbusiness
researchProduct

Rescuing Over-activated Microglia Restores Cognitive Performance in Juvenile Animals of the Dp(16) Mouse Model of Down Syndrome.

2020

Microglia are brain-resident immune cells and regulate mechanisms essential for cognitive functions. Down syndrome (DS), the most frequent cause of genetic intellectual disability, is caused by a supernumerary chromosome 21, containing also genes related to the immune system. In the hippocampus of the Dp(16) mouse model of DS and DS individuals, we found activated microglia, as assessed by their morphology; activation markers; and, for DS mice, electrophysiological profile. Accordingly, we found increased pro-inflammatory cytokine levels and altered interferon signaling in Dp(16) hippocampi. DS mice also showed decreased spine density and activity of hippocampal neurons and hippocampus-depe…

0301 basic medicineAdultMaleDown syndromeDendritic spinemedicine.medical_treatmentAminopyridinesMice TransgenicHippocampal formationHippocampus03 medical and health sciencesMice0302 clinical medicineImmune systemCognitionMedicineHippocampus (mythology)AnimalsHumansPyrrolesNeuroinflammationMicrogliabusiness.industryGeneral NeuroscienceAnti-Inflammatory Agents Non-SteroidalAge Factorsmedicine.disease3. Good healthMice Inbred C57BLDisease Models Animal030104 developmental biologymedicine.anatomical_structureCytokinenervous systemFemaleMicrogliaDown SyndromebusinessNeuroscience030217 neurology & neurosurgeryNeuron
researchProduct

Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein is a Treatment of Experimental Alzheimer’s Disease

2016

Amyloid-b (Ab) clearance from brain, which is decreased in Alzheimer's disease, is facilitated by apolipoprotein E (ApoE). ApoE is upregulated by activation of the retinoid X receptor moiety of the RXR/PPAR dimeric receptor. As we have previously demonstrated, estrogenic compounds, such as genistein, have antioxidant activity, which can be evidenced by increased expression of manganese superoxide dismutase (MnSOD). Furthermore, genistein is a non-toxic, well-tested, and inexpensive drug that activates PPARg receptor. We isolated and cultured cortical astrocytes from dissected cerebral cortices of neonatal mice (C57BL/6 J). Preincubation with genistein (5 mM) for 24 hours, prior to the addit…

0301 basic medicineApolipoprotein EApolipoprotein BPeroxisome proliferator-activated receptorGenisteinPlaque Amyloid01 natural sciencesBiochemistrychemistry.chemical_compound0302 clinical medicine030212 general & internal medicineReceptorCells CulturedNootropic Agentschemistry.chemical_classificationbiologyGeneral NeuroscienceBrainGeneral MedicineGenisteinPsychiatry and Mental healthClinical PsychologyNeuroprotective AgentsFemalePeroxisome proliferator-activated receptor gammamedicine.medical_specialtyTetrahydronaphthalenesMice TransgenicRetinoid X receptor03 medical and health sciencesApolipoproteins EDownregulation and upregulationAlzheimer DiseaseIn vivoPhysiology (medical)Internal medicineAvoidance LearningmedicineAnimalsHabituation PsychophysiologicMaze LearningAmyloid beta-PeptidesRecognition PsychologyOlfactory Perception0104 chemical sciencesMice Inbred C57BLPPAR gamma010404 medicinal & biomolecular chemistryDisease Models Animal030104 developmental biologyEndocrinologychemistryBexaroteneAstrocytesbiology.proteinPhytoestrogensGeriatrics and Gerontology030217 neurology & neurosurgeryJournal of Alzheimer's Disease
researchProduct

Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease.

2018

Mutations in the HGPRT1 gene, which encodes hypoxanthine-guanine phosphoribosyltransferase (HGprt), housekeeping enzyme responsible for recycling purines, lead to Lesch-Nyhan disease (LND). Clinical expression of LND indicates that HGprt deficiency has adverse effects on gastrointestinal motility. Therefore, we aimed to evaluate intestinal motility in HGprt knockout mice (HGprt(−)). Spontaneous and neurally evoked mechanical activity was recorded in vitro as changes in isometric tension in circular muscle strips of distal colon. HGprt(−) tissues showed a lower in amplitude spontaneous activity and atropine-sensitivity neural contraction compared to control mice. The responses to carbachol a…

0301 basic medicineAtropineMaleHypoxanthine PhosphoribosyltransferaseLesch-Nyhan SyndromeDopaminemedicine.disease_causeSettore BIO/09 - FisiologiaLesch-NyhanMice0302 clinical medicineEnzyme InhibitorsEvoked PotentialsMyenteric plexusHGprt deficient miceNeurotransmitter AgentsBrainNG-Nitroarginine Methyl EsterKnockout mouseCytokinesAcetylcholinemedicine.drugmedicine.medical_specialtyCarbacholTyrosine 3-MonooxygenaseColonMotilityMice TransgenicIn Vitro TechniquesEndocrine and Autonomic SystemArticleContractility03 medical and health sciencesCellular and Molecular NeuroscienceDopamineInternal medicinemedicineAnimalsCytokineEndocrine and Autonomic Systemsbusiness.industryMuscle SmoothBenzazepinesMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyGene Expression RegulationHGprt enzymeFaceOxidative streCarbacholNeurology (clinical)Lipid PeroxidationbusinessGastrointestinal MotilityReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressAutonomic neuroscience : basicclinical
researchProduct

Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy

2016

Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confi…

0301 basic medicineAutophagy-Related ProteinsMiceProgranulinsGanglia SpinalDorsal root gangliaGranulinsPain MeasurementCD11b AntigenMicrofilament ProteinsChronic painSciatic nerve injuryCysteine Endopeptidasesmedicine.anatomical_structureNociceptionNeurologyNeuropathic painIntercellular Signaling Peptides and Proteinsmedicine.symptomMicrotubule-Associated ProteinsNerve injuryProgranulinSensory Receptor CellsGreen Fluorescent ProteinsPainMice Transgeniclcsh:RC321-571ATG1203 medical and health sciencesLysosomal-Associated Membrane Protein 1mental disordersmedicineAutophagyAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryActivating Transcription Factor 3Sensory neuronbusiness.industryAutophagyCalcium-Binding ProteinsNerve injurymedicine.diseaseSensory neuronMice Inbred C57BLDisease Models Animal030104 developmental biologyGene OntologyNeuralgiabusinessApoptosis Regulatory ProteinsNeuroscienceNeurobiology of Disease
researchProduct

Dynamics and predicted drug response of a gene network linking dedifferentiation with β-catenin dysfunction in hepatocellular carcinoma

2019

Background & Aims Alterations of individual genes variably affect the development of hepatocellular carcinoma (HCC). Thus, we aimed to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRNs). Methods Using data from The Cancer Genome Atlas, from the LIRI-JP (Liver Cancer – RIKEN, JP project), and from our transcriptomic, transfection and mouse transgenic experiments, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of β-catenin (CTNNB1). We further generated and validated a quantitative mathematical model of the GRN using human cell lines and in vivo expression data. Results We found that LIN28B and C…

0301 basic medicineBeta-cateninCarcinoma HepatocellularHepatocellular carcinomaLIN28BCellGene regulatory networkPrincipal component analysisMice TransgenicBiologyTransfectionTranscriptomeCohort Studies03 medical and health sciencesMice0302 clinical medicineMathematical modelmicroRNAmedicineAnimalsHumansGene Regulatory NetworksCTNNB1Genebeta CateninHepatologySequence Analysis RNALiver NeoplasmsGene regulatory networkRNA-Binding ProteinsHGF/MET pathwayMicroRNAHep G2 CellsHCCSModels TheoreticalPrognosisPersonalized medicinedigestive system diseases030104 developmental biologymedicine.anatomical_structureCancer researchSMARCA4biology.protein030211 gastroenterology & hepatologyTranscriptome
researchProduct

Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype

2017

Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire…

0301 basic medicineBlood GlucoseAutoimmune diabeteAutoimmunityNodmedicine.disease_causeT-Lymphocytes RegulatoryAutoimmunityImmune toleranceSettore MED/13 - EndocrinologiaMiceAutoimmune diabetes0302 clinical medicineMice Inbred NODImmunology and AllergyNOD miceMice KnockoutInterleukin-17Forkhead Transcription FactorsFlow CytometryImmunohistochemistryhumanitiesInterleukin-10Interleukin 10Tumor necrosis factor alphaImmunologySettore MED/50 - Scienze Tecniche Mediche ApplicateMice TransgenicLaser Capture MicrodissectionReal-Time Polymerase Chain Reactionbehavioral disciplines and activities03 medical and health sciencesIslets of LangerhansImmune systemChymasesmedicineAnimalsInflammationInnate immune systembusiness.industryInterleukin-6Immune toleranceSettore MED/46 - Scienze Tecniche di Medicina di LaboratorioAutoimmune diabetes; Immune tolerance; Interleukin-10; Interleukin-6; Mast cells030104 developmental biologyDiabetes Mellitus Type 1ImmunologyMast cellsTh17 CellsMast cells; Autoimmune diabetes; Interleukin-6; Immune tolerance; Interleukin-10business030215 immunology
researchProduct

Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4.

2017

The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production. Likewise, IRF1 inhibits IL-9 production by human Th9 cells. IRF1 counteracts IRF4-driven Il9 promoter activity, and IRF1 and IRF4 have opposing function on activating histone modifications, thus modulating RNA polymerase II recruitment. IRF1 occupancy correlates with decreased IRF4 abundance, suggesting an IRF1-IRF4-binding competition at the I…

0301 basic medicineCD4-Positive T-LymphocytesScienceCellular differentiationAntigen presentationGeneral Physics and AstronomyRNA polymerase IIMice TransgenicBiologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciences0302 clinical medicineInterferonmedicineAnimalsHumansInterleukin 9Transcription factorMice KnockoutMultidisciplinaryGene Expression ProfilingQInterleukin-9Cell DifferentiationGeneral ChemistryT-Lymphocytes Helper-InducerCell biologyMice Inbred C57BL030104 developmental biologyIRF1Interferon Regulatory Factorsbiology.protein030215 immunologyInterferon regulatory factorsmedicine.drugInterferon Regulatory Factor-1Nature communications
researchProduct

Reduced Breast Tumor Growth after Immunization with a Tumor-Restricted MUC1 Glycopeptide Conjugated to Tetanus Toxoid.

2018

Abstract Preventive vaccination against tumor-associated endogenous antigens is considered to be an attractive strategy for the induction of a curative immune response concomitant with a long-lasting immunologic memory. The mucin MUC1 is a promising tumor antigen, as its tumor-associated form differs from the glycoprotein form expressed on healthy cells. Due to aberrant glycosylation in tumor cells, the specific peptide epitopes in its backbone are accessible and can be bound by antibodies induced by vaccination. Breast cancer patients develop per se only low levels of T cells and antibodies recognizing tumor-associated MUC1, and clinical trials with tumor-associated MUC1 yielded unsatisfac…

0301 basic medicineCancer ResearchImmunologyMice TransgenicTriple Negative Breast NeoplasmsCancer Vaccines03 medical and health sciences0302 clinical medicineImmune systemAntigenCell Line TumorTetanus ToxoidMedicineAnimalsHumansskin and connective tissue diseasesMUC1Vaccines Syntheticbiologybusiness.industryMucin-1ToxoidGlycopeptidesAntibodies MonoclonalMammary Neoplasms ExperimentalMiddle AgedTumor antigen030104 developmental biologyImmunizationTumor progression030220 oncology & carcinogenesisImmunoglobulin Gbiology.proteinCancer researchFemaleAntibodybusinessCancer immunology research
researchProduct

Persistent immune stimulation exacerbates genetically driven myeloproliferative disorders via stromal remodeling

2017

Abstract Systemic immune stimulation has been associated with increased risk of myeloid malignancies, but the pathogenic link is unknown. We demonstrate in animal models that experimental systemic immune activation alters the bone marrow stromal microenvironment, disarranging extracellular matrix (ECM) microarchitecture, with downregulation of secreted protein acidic and rich in cysteine (SPARC) and collagen-I and induction of complement activation. These changes were accompanied by a decrease in Treg frequency and by an increase in activated effector T cells. Under these conditions, hematopoietic precursors harboring nucleophosmin-1 (NPM1) mutation generated myeloid cells unfit for normal …

0301 basic medicineCancer ResearchStromal cellMyeloidMice TransgenicVascular RemodelingBiologyInbred C57BLTransgenicMice03 medical and health sciencesMyelogenousMyeloproliferative DisordersmedicineAnimalsHumansMyeloproliferative DisorderAnimals; Cell Proliferation; Humans; Mice; Mice Inbred C57BL; Mice Inbred CBA; Mice Transgenic; Myeloproliferative Disorders; Stromal Cells; Vascular Remodeling; Oncology; Cancer ResearchCell ProliferationMyeloproliferative DisordersAnimalStromal CellInbred CBANeutrophil extracellular trapsmedicine.diseaseMice Inbred C57BLHaematopoiesisLeukemia030104 developmental biologymedicine.anatomical_structureOncologyImmunologyMice Inbred CBABone marrowStromal CellsNucleophosminHuman
researchProduct